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Preface

In recent years, many observers have expressed concern about “grade
inflation”—that is, increases in the grades given to students at any given level of
achievement. Anecdotal reports suggest substantial inflation both in many high
schools and in postsecondary institutions. The possibility of inflation at the high
school level is a serious concern to many selective postsecondary institutions, in
that it may bias their admissions decisions and may make it increasingly difficult
to distinguish among high-achieving students. Grade inflation would also be
troubling to many K-12 educators and policymakers. Education reform
currently focuses on establishing high standards for achievement, and grade
inflation could threaten that intent.

Despite the importance of grade inflation and the widespread reports of it, there
has been little systematic research exploring changes in grading standards—
which would include grade inflation—in U.S. high schools.

Accordingly, with support from the College Entrance Examination Board, RAND
undertook an evaluation of changes in high school grading standards across the
nation as a whole from 1982 to 1992. This study focused primarily on
mathematics because it was possible only in mathematics to adjust grades to take
into account tested achievement. This report presents the results of that
evaluation.
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Summary

In recent years, many observers have maintained that grades in secondary and
postsecondary institutions have become inflated. Anecdotal reports of grade
inflation, in some instances seemingly egregious, are common, but few studies
have attempted to evaluate systematically changes in grading standards over
time.

This study explores changes in high school grading standards by comparing the
senior cohorts of 1982 and 1992. The data used are nationally representative
surveys, the High School and Beyond study (HSB, for the 1982 cohort) and the
National Education Longitudinal Study of 1988 (NELS-88, for the 1992 cohort).
The study explores how the distribution of grades changed over that time, how
those changes varied across types of students and schools, whether the
relationship between tested achievement and grades changed between 1982 and
1992, how grades changed when changes in tested proficiency and course-taking
were taken into account, and whether the predictors of grades changed over that
decade. Descriptive analyses were carried out for overall high school grade point
average (GPA) and for academic GPA in several subject areas. Multivariate
analyses were restricted to mathematics because the surveys provided equatable
tests only in that subject, making it impossible to control for changes in proficiency
in the other subject areas. Efforts were made to use Scholastic Aptitude Test (SAT)
and American College Test (ACT) scores as surrogates in other subjects, but that
approach was abandoned after analyses showed substantial changes in the self-
selection of the tested subsamples between 1982 and 1992.

The term “grade inflation” typically refers to an increase in the average grades
attained by students with a given level of proficiency in the material grades are
supposed to represent. This change in grading standards, however, which is
called “mean shift” inflation in this report, is not the only way in which grades
might become inflated. Another form of possible inflation is labeled “decreased
correlation.” This refers to a weakening of the relationship between proficiency
and grades, such that low achievers are penalized less and high achievers
rewarded less by the grading system. This report examined both of these
possible changes in grading standards.

Despite the widespread discussion of grade inflation, these analyses did not
show substantial grade inflation between 1982 and 1992. Indeed, they suggested



that if changes in tested proficiency are taken into account, grades were deflated
over the period, at least in academic mathematics courses. Simple descriptive
analyses showed an increase in mean grades and in the percentage of grades
above a grade of B or better, but these increases were mostly very small. For
example, overall academic GPA increased by only 0.07 on a scale of 0 (F) to 4.3
(A+)—that is on a scale in which the change from a B- to a B would be 0.30. The
frequency of grades of B or better increased by 3.1 percentage points. Overall
changes in specific subject areas were similarly small. However, the increase was
considerably larger among high-income students and in urban schools: Overall
mean grades increased by 0.21 for the former group and by 0.22 in the latter.

During the same period, however, performance on the mathematics tests
included in the HSB and NELS surveys, which were linked to be on the same
scale, increased by about one-third of a standard deviation.! At the same time,
the relationship between performance on the test and academic mathematics
GPA increased. After disattenuating for unreliability (which was greater in HSB
than in NELS), the correlation increased from 0.47 to 0.58. When the increase in
tested proficiency was controlled, mean grades actually declined for all but high-
scoring students. Because of the increase in the correlation between test scores
and GPA from 1982 to 1992, this decrease in adjusted GPA was larger among
lower-scoring students; it was 0.16 for students whose scores were at the mean
and 0.35 for students whose scores were a standard deviation below the mean.
Between 1982 and 1992, the number of mathematics courses taken by the average
student increased markedly, as did enrollment in some courses traditionally
considered college preparatory. To the extent that the data allow adjustment for
these trends in course-taking, however, they appeared to have had little effect on
changes in grades. Controlling for changes in both course-taking and tested
proficiency again showed deflation of mathematics grades, albeit slightly less
substantial than appeared when only test scores were controlled. A multivariate
analysis of the prediction of academic mathematics GPA by student- and school-
level variables found only modest changes from 1982 to 1992.

1Throughout this report, we maintain a distinction between “linking” and “equating” as
methods of placing scores from two different tests, or two different forms of the same test, on the
same scale. In modern usage, “linkage” is a more general term that refers to a range of statistical
techniques that place the scores from two tests on a single scale. Linkage does not necessarily make
tests functionally equivalent; for example, linked tests may contain somewhat different content, so
that it is not a matter of indifference to some individuals which test they take. In contrast, “equating”
refers to methods that endeavor to make tests as nearly equivalent as is practical. For example,
successive forms of the SAT are equated, so it is not a matter of importance to students which form
they take. The NELS and HSB tests were not constructed to be equivalent and, therefore, a linkage of
the two cannot be considered an equating. The implications of this for our findings are discussed
below where pertinent.



The analyses reported here have several important limitations. The test scores
used to adjust for changes in proficiency were not ideal. Although the NELS and
HSB mathematics tests had sufficient similarity and overlap to permit use of a
conventional equating method, they were not equivalent, and differences
between them may have contributed to the findings, e.g., the stronger
relationship between grades and scores found in NELS. More important, the
HSB and NELS tests were general-purpose survey tests and do not provide a
measure of mastery of the specific content pertinent to grades in each course.
Coursework variables were also limited in important ways. Courses with similar
titles may vary markedly in content, for example, and the mix of content
subsumed by any given course title might have changed between 1982 and 1992,
perhaps as a result of the large increases in course-taking. Thus, analyses using
better variables might have produced somewhat different results, but given the
pattern of results reported here, it seems unlikely that they would have shown
score inflation.

What accounts for the inconsistency between this study, which found no
evidence of overall grade inflation between 1982 and 1992, and the widespread
reports of high school grade inflation? There are at least three possibilities. One
is that inflation has occurred but not during the decade examined here. A second
possibility is that increases in grades in some schools, such as schools serving
high-income families, may have attracted attention and may have been
misconstrued as an indication of more widespread grading changes. Yet another
possibility is that grading standards were not as harsh in the past as some
observers believe and that examples of overly lenient grading would not be
restricted to the present, if similar information were available about earlier
cohorts.

Grading standards warrant further research, not only because of their
importance to selective postsecondary institutions but also because of the
centrality of standards to the current reform movement in K-12 education. It
would be important to explore, for example, whether grades were inflated
during other time periods, and the incidence and distribution of overly lenient
grading would be an important issue regardless of trends over time. Further
research should not be restricted to the use of large survey databases, which are a
good tool for providing a first look at issues of this sort but lack the detail needed
to explore them in depth.
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1. Introduction: The Importance of
Grading Standards

Although colleges and universities rely on many factors in selecting students for
admission, high school grades and scores on admission tests such as the
Scholastic Aptitude Test (SAT) or the American College Test (ACT) are typically
the most important. Colleges rely heavily on test scores and grades because they
are believed to provide important and not entirely overlapping information
about students’ likelihood of success in college.

Although the use of the SATs and ACTs has been the subject of intense debate in
recent years, the use of high school grades as a basis for admissions is also
problematic for two reasons. First, grades are affected by both subjectivity and
the varying standards and purposes of teachers’ grading practices (Pilcher, 1994;
Brookhart, 1993; Stiggins, Frisbie, and Griswold, 1989). Admissions officers may
try to address inconsistencies in grading by taking into account the
characteristics and standards of individual high schools, but their ability to do so
is limited, and they cannot take into account inconsistencies within schools.
Second, many observers have argued that grades in both secondary and
postsecondary institutions have become inflated in recent years (Turnbull, 1985;
Adelman, 1982; Keith, 1982). That is, they have argued that any given level of
performance receives a higher average grade now than in years past.

High school grade inflation would be a concern to postsecondary institutions for
two reasons. It could erode their ability to identify promising students—for
example, if grades of A encompassed a wide range of performance, or if inflation
varied substantially across schools. Some observers maintain that the shift has
been so substantial that grade point averages (GPAs) from some schools are no
longer useful to selective postsecondary schools attempting to identify able
students. In addition, some observers are concerned that overly lenient high
school grades may give students unrealistic expectations concerning their ability
to handle the demands of postsecondary education.

However, despite these claims, the research evidence showing grade inflation
over time is scarce. Only a few studies have analyzed national data to examine
whether the relationships between student grades and test scores have changed
over time. Generally, these studies show that grade inflation is more prevalent in
certain subjects, such as mathematics, science, and foreign languages, or for



certain students—those at the higher end of the grade point distribution
(Adelman, 1982; Ziomek and Svec, 1995).

In addition, understanding changes in grade distributions is not as simple as
quantifying them. Changes in the grade distribution may stem from many
factors other than trends in grading standards, such as changes in actual student
proficiency, in course-taking patterns and track placement, and in the
characteristics of the student population (such as an increase in the proportion of
students for whom English is a second language). Moreover, changes in grading
standards may have varied among important subgroups of the population, such
as high- and low-achieving students, minority and nonminority students, rich
and poor students, or students in urban and suburban schools. Understanding
variations among important subgroups may be important for determining policy
responses to changes in grading practices.

In response to these gaps in our knowledge, we conducted a series of descriptive
and multivariate analyses of nationally representative data between 1982 and
1992 to understand the trends in high school grades and their correlates over the

course of a decade.

Research Questions

We analyzed nationally representative data to examine trends in high school
grades between 1982 and 1992, looking not only at changes in the grade
distribution over time but also at concomitant changes in the educational system
and in the characteristics of the student population that might have contributed
to the trends or may help interpret them. In this report, we address the following
research questions:

e Over the decade from 1982 to 1992, were there substantial changes in the
distribution of high school grades, either overall or for certain subjects? If so,
how substantial has it been and how has it varied (e.g., between males and
females, minority and nonminority students, and poor and rich students)?

¢ Did trends in grading standards vary across types of schools?

¢ Did the relationship between grades and student performance on
achievement tests change over time?

e How did grades change when the influence of changes in tested proficiency
and course-taking is taken into account?

e  What student- and school-level factors influenced grades, and did those
relationships change substantially between 1982 and 1992?



Analytical Approach

We addressed these questions by analyzing nationally representative data on
student background and family characteristics, school characteristics, and
student course-taking during secondary school. We employed a variety of
exploratory and multivariate analyses.

A comparison of High School and Beyond (HSB) to the National Education
Longitudinal Study of 1988 (NELS)—both nationally representative longitudinal
databases collected by the U.S. Department of Education—provides information
on changes in grading and on factors that may have influenced them. These
databases include information on student, family, and school characteristics;
course-taking; track placement; grades; and short test batteries in different
subject areas (e.g., mathematics and reading). In addition, SAT and ACT scores
are available for some students. Although the HSB and NELS test batteries have
important differences, they have been linked both by the Educational Testing
Service (ETS) and by RAND. The linking of these test batteries is sufficiently
strong to justify using the linked scores as a basis for judging changes in grading
standards (see Berends, Sullivan, and Lucas, 1999). The richness of HSB and
NELS makes them the best data, to date, for addressing the questions noted
above.

Organization of the Report

In the next section, we briefly review the research on grade inflation at both the
secondary and postsecondary levels. In Section 3, we discuss the data and
methods used in the analysis. In Section 4, we present descriptive comparisons
of grade distributions in 1982 and 1992 by different student and school
characteristics. Section 5 focuses on the relationship between mathematics
grades and both tested proficiency and course-taking patterns. In Section 6, we
discuss the results from cross-sectional models that examine the variation in
grading standards across different school contexts. In Section 7, we summarize
the conclusions and discuss the implications of our analysis.




2. Grade Inflation: Anecdotes and
Systematic Evidence

A number of editorials have appeared in the news about the alleged problem of
grade inflation in America’s secondary and postsecondary institutions. For
example, Zirkel (1999) reported on the graduation ceremonies of two schools,
each of which had 16 valedictorians who all achieved a 4.0 (straight A) average
during their four years of high school. One observer wrote of a school in
Pennsylvania in which an A average may just barely get a student to rank in the
top 50 in his or her class because 48 of the 950 graduates received a 4.0 average
for their high school career (Solomon, 1998a, 1998b).

Such anecdotes, and there are many others, have led some to conclude that grade
inflation is a social and economic cancer. The term “grade inflation” is a
euphemism, but the phenomenon is not the benign or insignificant statistical
artifact that its name implies. Rather, grade inflation implies a kind of
educational fraud, and if present, it would present hard evidence of what the
Nation At Risk report termed “a rising tide of educational mediocrity” (National
Commission on Excellence in Education, 1983, p. 5).

Despite these anecdotes, generalizable empirical evidence about grade inflation
is surprisingly thin. Here, we briefly review the studies that examine grade
inflation at the secondary and postsecondary levels.

Grade Inflation in Secondary Schools

The research evidence showing grade inflation over time in secondary schools is
scarce. We know of only two studies that have examined changes in the
distribution of grades over time for different student cohorts. Only one of these
examined changes in the GPA distribution by student test scores.

One study (Adelman, 1982) analyzed student transcript data for several cohorts
between 1969 and 1981. Adelman examined the discrepancy between students'
self-reported grades and transcripts to gauge the inflation of self-reported grades
and investigated changes in grades on transcripts between 1975 and 1981. Not
surprisingly, when comparing student self-reported grades to the grade
information obtained directly from the students’ transcripts, Adelman found that
the student self-reports were inflated in all cohorts. For example, during the



1975-1981 period, the GPA for academic track students was 2.83 in their
transcripts compared to their self-reported GPA of 3.09. Examining changes over
time in the transcript grades for different courses, Adelman found an increase in
both high and low grades. That is, for students in college-track courses, although
achievement scores declined, both the percentage of As and Bs and the
percentage of Ds and Fs increased, and the percentage of Cs decreased.

Adelman summarizes his analyses across courses by stating, “Grade inflation,
while significant, was not as pervasive during this time period as assumed” (p.
1). Grade inflation was more pronounced in mathematics, and to some extent
science and foreign languages, as well as among students in the general track,
which expanded significantly during the time period analyzed. For example,
between 1975 and 1981, there was a 16.5 percent increase in the mean grades for
algebra 1, a 12 percent increase in advanced mathematics, and a 16 percent
increase in both Latin and general science. Yet, for a number of other course
titles (e.g., sociology, literature, and health education), grades remained stable or
even declined over this time period.

Ziomek and Svec (1995) found evidence of grade inflation in the cohorts
graduating from 1990 to 1994 in over 5,000 public schools. They placed schools
into deciles based on their mean ACT scores and then examined changes in both
grades and ACT scores within each decile. They included only students who had
complete ACT scores and who had taken at least three courses in at least three of
the four content areas of mathematics, science, social studies, and English.
Ziomek calculated the mean difference in GPAs, standardized within deciles,
between graduates in their baseline year of 1990 and the graduates in each of the
following four cohorts.

They found that, overall, GPAs increased from 2.94 in 1989-1990 to 3.04 in 1993—
1994, whereas ACT scores remained roughly constant within each of the deciles.
They also found that

e The increases in standardized grade differences were more prominent in
later cohorts than in earlier ones. For example, in 1993-1994, the overall
average standardized difference of GPAs across ACT deciles was 0.16
compared with the 0.03 difference in 1990-1991.

e The large increases in the standardized differences of GPAs occurred within
the upper deciles of the ACT distribution (i.e., deciles 7-10). For instance, in
the 10th decile, the standardized difference of GPAs was 0.21 in 1993-1994
compared with 0.06 in 1990-1991, whereas the standardized difference in the
1st decile was 0.12 in 1993-1994, even though that increased from the 0.03
difference in 1990-1991.




e Grade inflation appears to be especially significant for GPAs greater than
3.50 across all ACT decile categories. For example, the percentage of
students in the 3.5-4.00 GPA range and scoring in the 10th ACT decile
increased from 26 percent in 1989-1990 to 33 percent in 1993-1994. For the
most part, the percentages of students with GPAs below 3.00 and scoring in
the 10th ACT decile declined over the time period examined.

In short, they found evidence of grade inflation over the time period studied,
particularly for students at the higher end of the grade point distribution.

Grade Inflation in Colleges and Universities

Institution-specific reports of grade inflation in postsecondary institutions
abound (see Zirkel, 1999; Stone, 1995). For example, Alexander (1993) reported
that in the early 1990s, 80 percent of Princeton undergraduates received nothing
but As and Bs, and at Stanford only 8 percent received Cs and Ds and none
received Fs, and at Williams, nearly half graduated with honors. In a nationally
representative sample of nearly 5,000 undergraduates, Levine (1994) examined
the proportion of students with GPAs of A- or higher and found that the figure
quadrupled between the late 1960s to the early 1990s. Other studies of colleges
and universities in the United States have found that GPAs of students receiving
bachelor’s degrees rose nearly 0.5 points between the mid-1960s and 1980s
(Rogers, 1983; Kolevzon, 1981; Birnbaum, 1977).

Simple changes in the distribution of grades, without consideration of actual
changes in achievement, need not indicate grade inflation, but there is some
evidence that changes in postsecondary grades do at least in part reflect inflation.
Stone (1995) argued that the reported rise in undergraduate GPAs was not
accompanied by an increase in tested achievement as measured by the Graduate
Record Exam (GRE) over this time period. The GRE is not designed as an
achievement measure, so this finding is not definitive, but it is suggestive.
Indeed, the simple magnitude of changes in grading described by Levine and
others adds credence to the hypothesis that grades have become inflated.

The focus of our analyses is grade inflation at the high school level. In the
sections that follow, we focus on nationally representative data of high school
students—their GPAs, tested achievement, and other individual and school
characteristics—to examine whether grade inflation exists and the factors that
may explain changes in the relationship between achievement and grades.



3. Data and Methods

We analyzed nationally representative datasets that describe the experiences of
high school students in the United States in the early 1980s and early 1990s. The
databases are the HSB survey and NELS.

High School and Beyond

HSB is a nationally representative, longitudinal study that includes an array of
information on students and schools. HSB is a two-stage stratified probability
sample with schools as the first-stage units and students within schools as the
second-stage units. In the first stage, 1,100 schools were selected and in the
second stage, about 36 students were randomly selected in each school. Some
types of schools were oversampled to ensure that adequate numbers of students
were available in the subpopulations of interest. We analyzed the subset of the
total sample of students who participated in the base year as sophomores and the
first follow-up as seniors (see Jones et al., 1983a) and who had information from
the school administrator surveys, student questionnaires, cognitive tests, and
transcript files.

As part of the second follow-up, information was collected from student
transcripts, including student course-taking histories and grades. Of the total
HSB sample of about 26,000 students who were seniors in 1982, over 18,000 were
randomly selected to constitute the target sample for the transcript study (Jones
etal., 1983b). The sampling procedures were a compromise between two
competing objectives: (1) the need for subgroup samples of sufficient size for
complex multivariate policy analyses, and (2) the desire to avoid undue losses in
statistical power because of disproportionate sampling. Of the nearly 18,000
students in the target sample, transcripts were received for 88 percent, resulting
in a sample of 15,941. Of these students, about 1,000 transferred during their
high school career and were deleted from our sample. Additional cases were
dropped because they lacked needed information from the school administrator
survey, the student survey, or cognitive testing. Thus, the final analysis sample
in this report for HSB is roughly 12,400 students.




National Education Longitudinal Study

NELS is a nationally representative database that includes detailed information
from students, teachers, schools, parents, and student transcript data (Ingels et
al., 1995). The 1988 base-year NELS included about 25,000 eighth grade students
in 1,035 schools. Some school types were oversampled to ensure that adequate
numbers of students were available in subpopulations of interest. Students in
NELS were followed up in the tenth grade (1990), in the twelfth grade (1992), and
two years after high school (1994). A fourth follow-up was conducted in 2000.
These data contain extensive information about the achievement and school
experiences of students before high school entry, on school organization in
middle and high school, and on students’ family and demographic characteristics
and on experiences beyond high school. In each of the first three waves of NELS
(grades 8, 10, and 12), students were tested in mathematics, science, reading, and
history.

The second follow-up of NELS also included a high school transcript study.
Transcripts were obtained for over 14,000 students who participated in NELS.
Because we required information from student and school administrator surveys
and cognitive achievement tests, the final sample for this report was about 11,500
students.

Measures

The analyses reported here used both student-level and school-level variables.
Most of the school-level variables are aggregates of student variables, but some
(e.g., school locale) have no student-level counterpart or were derived from a
different source. The definitions of all variables were matched across the HSB
and NELS datasets; we note below where this required modifications of the
original variable.

The private-school samples were not comparable in HSB and NELS. They used
different sampling frames, and NELS differentiated the private sector into
additional categories. Hence, we did not examine the difference between public
and private schools. Private-school students were included in the file used in the
descriptive analyses so that we could carry out exploratory analysis of private
and public schools but were deleted from the files used in all multivariate
analyses.



Student-Level Variables

GPAs. The primary focus of this study is student grades and possible changes in
the distribution of grades between 1982 and 1992. Information for student GPAs
was taken from the transcript files to create overall and mathematics-specific
GPAs—using the conventional scale where 4.0isan A,3.0isaB,2.0isa C, 1.0is
aD,and OisanF. Asis conventional, in schools that used pluses and minuses, a
plus added 0.3, and a minus subtracted 0.3.

All courses listed on seniors” high school transcripts were included. Almost all
courses were identified in the transcript records as having been taken in grades 9
through 12. None was identified as being taken in earlier grades, but less than
half of 1 percent of records lacked an indicator of the grade in which the course
was taken. These records were included.

Descriptive tabulations of overall GPA excluded no courses. In specific subject
areas, however, analysis was restricted to GPA in academic courses. The
classification of courses as academic was based on the 1998 revision of the
Secondary School Taxonomy, or SST (National Center for Education Statistics,
1999). The SST is a hierarchical classification based on a more detailed grained
classification called the Classification of Secondary School Courses (CSSC), in
which courses are placed into broad subject areas such as mathematics and then
are broken down into progressively finer classifications. We excluded courses in
categories noted as vocational, remedial, special education, and English as a
second language. Our rules were as follows:

e Mathematics: exclude SST category 1_19 (vocational, etc.) and CSSC codes
starting with 52, 54, or 56 (primarily special education).

¢ Science: include all science and engineering courses with SST codes starting
with 1_2, but exclude courses with CSSC codes starting with 52, 54, or 56.

e English: include all courses with SST codes starting with 1_3 but exclude
SST =1_35 (English as a second language) and CSSC codes starting with 52,
54, or 56.

Student Achievement. The independent measure of student achievement
examined here is the mathematics tests in HSB and NELS, which have been
linked over time to place them on the same scale. The tests were linked using
Item Response Theory (IRT) methods (Lord 1980; Hambleton 1989; see Appendix
A for more details of the linking procedures used in this study). When the
assumptions of IRT are met, the estimation of item parameters allows one to
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substitute items without changing the estimates of student proficiency.
Similarly, when common items are included in different tests, these items can be
used as anchors to link scores on the two tests.

The NELS and HSB mathematics tests were sufficiently similar in content and
contained enough common items to permit linking, and research to date suggests
that the tests contain sufficient overlap across the cohorts to allow useful
comparisons of students’ mathematics achievement in secondary school (see
Berends, Sullivan, and Lucas, 1999; Rock et al., 1985b; Rock and Pollack, 1995).1
However, it is important to bear in mind that although the scales of the two tests
are linked to account for differences in difficulty, the tests are different enough
that they cannot be considered fully equivalent even after linking. Several
instances in which remaining differences between the tests may have affected our
analyses are noted below. Linking of the NELS and HSB tests was not possible in
other subject areas.

Race/Ethnicity. Both surveys included items to identify students’ racial /ethnic
group. Descriptive analyses distinguished between African Americans,
Hispanics, Asians, and non-Hispanic whites. For reasons of sample size, Asians
were omitted from multivariate analyses. For these analyses, we included
dummy variables to indicate African American (or black) and Hispanic (or
Latino); the omitted comparison group was non-Hispanic whites.

Gender. Gender was included as a dummy variable, equal to one if the student
was female.

Mother’s Education. Each high school senior cohort survey provided
information to create a measure for mother’s years of education, coded as 10 if
the mother did not finish high school, 12 if the mother was a high school
graduate, 14 if the mother attended some college, 16 if the mother received a
four-year college degree, and 18 if the mother received a graduate or professional
degree.

Family Income. Income posed a particularly challenging problem. First, the two
surveys used different income intervals in the question given to students. HSB
used eight response categories whereas NELS used 14, and the endpoints for

1To measure a broader range of abilities and the extent of cognitive gains between eighth and
twelfth grades, NELS included various forms of the tenth and twelfth grade tests to avoid floor and
ceiling effects. For example, tenth graders in the first follow-up test administration were given
different forms of the test depending on how they scored in the eighth grade base year. In
mathematics, there were seven forms, and in reading there were five forms, all differing in difficulty
to provide better estimates of achievement throughout the proficiency distribution. (For further
details on the psychometric properties of the NELS tests, see Rock and Pollack, 1995). It was possible
to link across all these NELS mathematics forms and the NELS and HSB cohorts.



11

many of the eight intervals used in HSB did not correspond to those used in
NELS. In addition, when incomes are changing nonuniformly, it is not apparent
how income categories should be adjusted to make categories comparable over
time. For example, depending on assumptions about how income differences
affect performance, one might want to keep income categories fixed in terms of
purchasing power, in terms of the percentages of household in each, or in terms
of their relationship to some critical level of income.

We first rescaled the HSB income categories to 1992 dollars by multiplying the
endpoints of each interval by the change in the Consumer Price Index (CPI) from
1982 to 1992. We then collapsed the eight income categories into five to make the
endpoints of the categories more similar to the endpoints of NELS categories.
The raw and adjusted income values and the categories into which we placed
each of the original ranges are shown in Table 3.1. We then collapsed the 14
NELS income categories into five by aligning the endpoints of the intervals as
closely as possible to the inflated endpoints of the collapsed HSB categories. This
is shown in Table 3.2.

In practice, this five-level income categorization turned out not to be useful in
some analyses, and it was not comparable to some earlier work that considered
the relationship between low income and grades (U.S. Department of Education,
1994). Therefore, although we used all five categories in descriptive analyses, we
collapsed them further into two categories for multivariate analyses. The low-
income category of the dichotomous variable included the lowest two of the five
income categories in Table 3.2 and had a cutoff roughly equal to 140 percent of
the poverty index for a family of four in 1992.

High School Program. The HSB and NELS dataset included a question
measuring the students’ perceptions of their secondary school track as academic,
general, or vocational. These measures provide only limited information about
Table 3.1
Raw and Adjusted Income Ranges and RAND Categories, HSB

CPI-Adjusted to 1992 Dollars

Low  Midpoint High Low Midpoint High Category
— 4,000 7,999 — 5,815 11,630 1
8,000 11,500 14,999 11,631 16,719 21,807 2
15,000 17,500 19,999 21,808 25,442 29,076 3
20,000 22,500 24,999 29,078 32,712 36,346 3
25,000 27,500 29,999 36,347 39,981 43,615 4
30,000 35,000 39,999 43,617 50,885 58,154 4
40,000 45,000 49,999 58,155 65424 72,693 4
50,000 72,694 — — 5
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Table 3.2

Raw Income Ranges and RAND
Categories, NELS

Low Midpoint  High  Category

- 500 999 1
1,000 2,000 2,999 1
3,000 4,000 4,999 1
5,000 6,250 7,499 1
7,500 8,750 9,999 1

10,000 12,500 14,999 2
15,000 17,500 19,999 2
20,000 22,500 24,999 3
25,000 30,000 34,999 3
35,000 42,500 49,999 4
50,000 62,500 74,999 4
75,000 87,500 99,999 5
100,000 150,000 199,999 5
200,000 5

students’ high school experience, but it is the case that this “track” variable
provides useful information about students’ programs and their placement
within the school (Lucas, 1999; Gamoran and Berends, 1987; Gamoran, 1989).
The academic group includes students who typically take courses for college-
bound students (either an officially mandated program of courses or an
unofficial sequence within the curriculum). Because we were interested in
grading standards as they pertain to college admissions, we created a dummy
variable for the academic track. The omitted group was all other students; we
did not distinguish between students in the vocational track and the general
track.

Course-Taking. Because we were concerned with the possible effects of changes
in course-taking on the distribution of academic grades, we needed to measure
the specific types of mathematics courses taken. For multivariate analyses,
mathematics courses were classified using the 1998 revision of the SST (National
Center for Education Statistics, 1999). Mathematics is broken into nine broad

categories:

General mathematics,
Consumer mathematics,
Pre-algebra,

Algebral,

Geometry,

I
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Algebra 2 through pre-calculus,
Advanced mathematics,

Unified mathematics, and

v o N &

Occupationally related mathematics.

We considered categories 3 though 7 to be academic courses and created
variables to distinguish among them. Of these, only one was subdivided in the
SST: advanced mathematics was subdivided into calculus, advanced placement
and international baccalaureate, and other. The content of many “unified
mathematics” courses appears to be academic; the description of the revised SST
notes that “Unified Mathematics was created to hold the unified coursework,
previously distributed among the Algebra 1, Geometry, and Advanced
Mathematics—Algebra subcategories” (National Center for Education Statistics,
1999, p. 29). However, it was not possible to determine the intended content
coverage of these courses or whether that intended content was similar in 1982
and 1992. Moreover, these courses were relatively uncommon, particularly in
HSB. Accordingly, these courses were included in our academic mathematics
GPA measure, but we did not create an additional variable indicating
coursework of this type.

Exploratory analysis indicated that it was reasonable o use only the first level of
the SST classification in mathematics.

For disentangling changes in coursework from changes in grading standards, the
most important consideration is the mix of coursework across types that might
have different standards. Accordingly, we created variables indicating the
proportion of each student’s academic mathematics marks coming from courses
of four types: algebra 1, algebra 2 (as defined above), geometry, and advanced.
The proportion of marks from all other academic mathematics courses was
necessarily omitted, as it is a linear function of the four specified proportions.

School-Level Variables

Mean Achievement. The test scores of the students in each school were
aggregated to obtain a school-level achievement measure.

School Racial/Ethnic Composition. School administrators in HSB and NELS
were asked about the proportion of various population groups who attended the
school. Using this information, we were able to create two school-level variables
that measured the proportions of African American and Hispanic students who
attended each school. The alternative would have been to create these measures
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by aggregating information from our samples. Both approaches have

drawbacks; aggregating student-level data from our reduced samples might have
misrepresented the composition of some schools, whereas relying on data from
administrators makes the level 1 (student) and level 2 (school) variables in our
multilevel models not precisely comparable.

School Mother’s Education. The student-level measure of mother’s educational
attainment was aggregated to the school level by taking the mean.

School Income. The school-level income variable was the proportion of students
in the low-income category of the income dichotomy described above.

School Locale. Schools were either urban, rural, or suburban.2 We created
dummy variables for each with suburban as the reference (omitted) category.

School Course-Taking. The school course-taking variables were the means of
the four proportions noted above. For example, one of the student-level
variables was the proportion of a student’s academic mathematics marks
stemming from courses in algebra 1. The school mean of that variable is the
average proportion of academic mathematics marks from courses in that
category across sampled students.

Methods
Sample Weighting

Because students were sampled for both HSB and NELS with varying
probabilities, it was necessary to weight the data to obtain comparable,
representative results. Both surveys offer a variety of sampling weights
representing the wave of the survey and the instrument from which variables are
derived. For example, the data include base-year test weights for use with

2 ocaleis a seven-digit code on the Common Core of Data (CCD) of the U.S. Department of
Education, defined as: 1. large city—a central city of a consolidated metropolitan statistical area
(CMSA) or metropolitan statistical area (MSA), with the city having a population > 250,000; 2.
midsize city—a central city of a CMSA or MSA, with the city having a population < 250,000; 3. urban
fringe of a large city—any incorporated place, Census-designated place, or nonplace territory within
a CMSA or MSA of a large city and defined as urban by the Census Bureau; 4. urban fringe of a
midsize city—any incorporated place, Census-designated place, or nonplace territory within a CMSA
or MSA of a midsize city and defined as urban by the Census Bureau; 5. large town—an incorporated
place or Census-designated place with a population > 25,000 and located outside a CMSA or MSA. 6.
small town—an incorporated place or Census-designated place with a population < 25,000 and >
2,500 and located outside a CMSA or MSA; 7. rural—any incorporated place, Census-designated
place, or nonplace territory designated as rural by the Census Bureau. The usual practice is to
combine these into three categories: urban = 1, 2; suburban/ large town = 3, 4, 5; and rural /small
town=6,7.
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students who were administered the base-year tests, as well as base-year
questionnaire weights for students administered the base-year questionnaire.
Because some students were administered the base-year questionnaire but not
the base-year test, these weights are not identical. The weights vary more
substantially across waves because of attrition. In addition, the sample for whom
transcripts were obtained was substantially different from that for whom
questionnaire data were obtained.

No weights were provided for the specific subsample we used (students with
valid data from the questionnaire, the tests, and transcripts), and the database
does not include the level of detail that would have allowed us to create those
weights. Accordingly, we conducted a series of detailed analyses to determine
how adequate one of the existing weights would be for our purposes. These
analyses are summarized in Appendix B. We concluded that the existing
transcript weights were adequate for our purposes, and all weighted analyses
reported here use those weights. These weights were restandardized so that the
sum of the weights was equal to 10 times the number of observations, for reasons
described in Appendix B.

Descriptive Analyses

The first stage in our analysis was a series of descriptive analyses to explore
changes between 1982 and 1992 in the distribution of grades, both overall and for
specific groups of students and schools. These descriptive analyses are not a test
for grade inflation because these they do not hold constant academic
achievement (proxied later by test scores) or changes in course-taking. However,
understanding the extent and location of changes in the grade distribution may
help explain common perceptions of grading changes and provide a useful
context for evaluating changes in grading standards.

These descriptive analyses were carried out both for total academic GPA and for
mathematics grades. We compared histograms of the entire grade distributions
and explored four summary measures (means, medians, and percentages above
B and B+). We do not present all of the measures but comment when they
provided substantially different views. Student and family characteristics used
in the descriptive analysis included race/ethnicity, gender, mother’s education,
track, and several income variables, including both a poverty dichotomy and a
categorical income variable, as described above. The only school variable used in
descriptive analyses was locality (urban, rural, suburban).
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Multivariate Analyses

To infer changes in grading standards from changes in the simple distributions in
grades, however, it is necessary to take into account two concurrent changes:
trends in the measured proficiency of students and changes in the courses they
took. During the period in question, there were some changes in the measured
achievement of students, particularly certain groups of students (Berends,
Sullivan, and Lucas, 1999; Campbell, Hombo, and Mazzeo, 2000; Koretz, 1992).
An increase in grades accompanied by an increase in measured achievement
might not signify inflation. In addition, one key reform in many states during
the 1980s was an increase in graduation requirements for students (Murphy,
1991). Thus, changes in grades may be a reflection of the changes between the
early 1980s and 1990s in the mix of courses that students took during their high
school careers.

Neither of these concurrent trends can be fully addressed analytically. To
estimate changes in grading standards, one ideally would want to control for
measures of achievement in the specific domains taught in each of the relevant
courses, and none of the assessments available to us were that detailed.
Controlling for changes in the courses taken is complicated by numerous factors.
For example, courses with the same name—say, algebra 1—may be very different
in content and difficulty, and one cannot assume that the mix of content and
difficulty across algebra 1 courses would stay constant if the proportion of
students enrolling in these classes increased substantially.

Nonetheless, steps can be taken to help disentangle these concurrent trends from
changes in grading. In mathematics, but not in other subjects, we could link the
mathematics tests administered in HSB and NELS and use the linked scores to
control for changes in overall proficiency in commonly taught aspects of
mathematics. We explored this approach using ACT and SAT scores to control
for proficiency in other areas. However, we found indications of substantial and
changing selectivity in the subsamples of HSB and NELS that had scores from
these tests and concluded that it was not feasible to use them in a comparable
manner to control for proficiency differences (see Appendix C).

Examining the possible effects of changes in course-taking was more complex.
We again focused on mathematics and began by examining changes in
enrollment patterns and in the grade distributions in broad categories of courses
(e.g., algebra 1 and geometry). We then explored whether differences in grades
among groups of courses reflected characteristics of the classes or the proficiency
of students. We created coursework indicator variables for inclusion in
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multivariate models predicting mathematics GPA. The analyses of proficiency
and coursework changes and their effects are presented in Chapter 5.

To explore the influence that other student and school characteristics may have
on grades, we estimated a series of multilevel models. In these models,
mathematics grades in 1982 and 1992 are a function of student characteristics
(e.g., gender, race/ethnicity, socioeconomic status, and course-taking patterns)
and school characteristics (e.g., locale, school income, and school racial/ethnic
composition). The results of these analyses are reported in Section 6.

The NELS and HSB data are clustered because of the multistage sampling design.
This clustering does not affect parameter estimates but it does bias variance
estimates. The multilevel models used in the analyses reported in Chapters 5
and 6 take into account clustering of observations within schools (see Appendix
D). No further adjustments for clustering were made.




18

4. Shifting Grades over a Decade?
A Descriptive Analysis

In this section, we provide descriptive information on changes in the distribution
of academic grades, overall and for important groups of students and schools.
These changes do not constitute evidence of grade inflation (or of other changes
in grading standards) because they do not take either course-taking or student
proficiency into account. However, they do help explore common perceptions of
grading changes and provide a context for investigating inflation. Following a
description of total academic GPA, we provide less-detailed information about
GPA changes by subject.

Total Academic GPA

Despite the widespread perception of grade inflation, the overall distribution of
academic grades showed only modest changes between 1982 and 1992, with
slight decreases in the frequency of grades at most levels equal to or lower than
C+ and slight increases at higher levels. The percentage of students with GPAs
of C+ or lower declined, whereas the percentages receiving GPAs of B- through
A increased (Figure 4.1). The mean GPA increased only from 2.56 to 2.63. The
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Figure 4.1—Overall Distributions of Academic GPA, 1982 HSB and 1992 NELS



19

percentage of students receiving a GPA of 3.0 or higher increased from 42.0 to
46.2, and the percentage of students with a GPA of 3.3 or higher increased from
27.7 to 30.8.

These small increases in GPA varied little among racial /ethnic groups. Only
Hispanics showed a substantially different change in GPA from the others.
Hispanics showed a substantially larger increase in mean GPA than the other
groups and a slightly greater increase in the percentage of GPAs of 3.0 or more
(Table 4.1). The Asian samples showed substantial but partially offsetting
changes: a decrease in grades of B but an increase in B- and B+. The very small
sample of Asians in HSB, as well as the substantial changes in the Asian
population caused by immigration, make these patterns questionable.

Changes in grading showed no substantial differences between males and
females. There were some slight differences—for example, the decrease in GPAs
of C+ was slightly larger among males—but both genders experienced a small
decrease in the frequency of all GPAs below a B- and a small increase in all
higher GPAs.

GPAs increased slightly more for students with well-educated mothers. The
academic GPAs of students whose mothers had a high school education or less
showed almost no change, whereas the GPAs of those whose mothers had some
college or more education increased by a larger but still small amount (Table 4.2).
The greater increase in GPA among higher-educated families occurred despite
the fact that this group became less selective. Students with mothers with at least
some college education increased from 29 to 35 percent of the sample from 1982
to 1992, and those whose mothers had at least a college degree increased from 15
to 26 percent of the sample.! The small mean increase in the academic GPA of

Table 4.1
Change in Academic GPA by Race/Ethnicity,
1982 to 1992
Percentage
with B or
Mean Grade Greater
All 0.074 31
Asian 0.037 3.0
African American 0.050 18
Hispanic 0.170 49
White 0.056 25

IThe changing distribution of mother’s education accounts for the fact that the increase in GPA
among all students is close to the highest value for any of the subgroups in Table 4.2.
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Table 4.2
Change in Academic GPA by Mother’s
Education, 1982 to 1992
All 0.074
Less than high school -0.020
High school graduate -0.004
Some college 0.081
College degree or more 0.073

students whose mothers had at least a college degree stemmed largely from a
sizable increase in GPAs of A-and A (Figure 4.2).

Self-reported track had a slight relationship to the increase in mean GPA. The
mean GPA of students’ reporting themselves in the academic track was
essentially constant, increasing only 0.01, whereas the GPA of other students
increased by about 0.04.

More substantial differences in grading changes appeared across income
categories. The four lower income categories all showed small changes in
average GPA. Categories 1, 3, and 4 showed increases similar to the overall
increase, but category 2 actually showed a small decrease in mean grades (Table
4.3). In contrast, the mean increase in the highest income category, although still
smaller than a fractional grade point (e.g., from B- to B), was nearly three times
as large as the overall mean increase. This mean increase reflected sizable

25

20

15 —rm-{1

Percentage

0 P I ‘ _ ‘
F D- D D+ C- C C+ B- B B+

Grade point average

[C11982HSB M 1992 NELS

Figure 4.2—Distributions of Academic GPA Among Students Whose Mothers Have
at Least a College Degree, 1982 HSB and 1992 NELS
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Table 4.3
Change in Academic GPA by Income
Category, 1982 to 1992
Percentage
with B or
Mean Grade Greater

All 0.074 3.1
1 0.062 1.7
2 -0.061 -39
3 0.077 0.1
4 0.055 1.3
5 0.211 13.0

increases in the percentages of students receiving GPAs of B+, A, or A (Figure
4.3). In all income categories other than the highest, the change in the percentage
of GPAs of 3.0 or greater was modest, whereas in the highest income category,
the increase was 13 percentage points (Table 4.3), from 48 to 61 percent of all
students in the category. This increase occurred even though the top income
category became less selective during the decade, increasing from 10.5 percent to
14.4 percent of the weighted sample.

The change in academic GPA from 1982 to 1992 varied substantially depending
on the location of schools. The mean academic GPAs of students in rural and
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Figure 4.3—Distributions of Academic GPA in Highest Income Category,
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suburban schools increased by only about 0.04, whereas the mean GPA of
students in urban schools increased by 0.22 (Table 4.4). This mean change
reflects a sizable increase in the percentages of students with GPAs of B, B+,
or A-.

Although simple changes in mean GPA do not necessarily correspond to grade
inflation, these variations across types of students and schools might help explain
the seeming inconsistency between the small aggregate change in mean academic
GPA between 1982 and 1992 and the widespread perception of serious grade
inflation. That is, some observers may have been more swayed by groups that
had atypically large changes in GPA, such as students from urban schools or
from high-income families.

Table 4.4
Change in Academic GPA by School Location,
1982 HSB to 1992 NELS
Percentage
with B or
Mean Grade Greater
All 0.074 0.031
Rural 0.043 0.010
Suburban 0.035 0.010
Urban 0.221 0.110
GPA Changes by Subject

Overall trends in grades could mask substantially different trends across subject
areas. Because some of our analyses were necessarily restricted to
mathematics—the only subject in which we had linked test scores for HSB and
NELS—it was particularly important to examine simple changes in mathematics
grades. We also explored trends in English and science grades.

Mathematics

Changes in academic mathematics GPA were in broad stroke similar to those for
total academic GPA, although they did differ in some details.

The overall increase in mathematics GPA was even smaller than the increase in
total academic GPA, but the change was inconsistent across the range of grades
(Figure 4.4). Mean mathematics GPA remained roughly a C+ and increased only
by about 0.04 from 1982 to 1992. Both males and females showed only a small
gain in mathematics GPA, but that for males was slightly larger: 0.07 for males
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Figure 4.4—Distributions of Academic Mathematics GPA, 1982 HSB and 1992 NELS

and 0.04 for females. The change in mean mathematics GPA varied only
modestly among racial/ethnic groups, ranging from a decline of 0.03 among
Asians to an increase of 0.1 among Hispanics. The modest differences in grading
changes across levels of mother’s education appeared with mathematics GPA as

well.

The sizable variation in academic GPA trends among income groups was echoed
in mathematics GPA. Indeed, the differences were slightly larger in the case of
mathematics (Table 4.5). The two lowest income categories showed decreases in
mathematics GPA (-0.03 and -0.14, respectively), whereas the highest income
category showed an increase of 0.26. The large differences in total GPA change
among locales, however, was greatly attenuated in the case of mathematics GPA.

Table 4.5

Change in Academic Mathematics
GPA by Income Category

Mean Grade
0.041
-0.032
-0.135
0.064
0.050
0.262

m)h@Nn—\E

A+
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Rural and suburban schools showed essentially no change in mathematics GPA,
and urban schools showed an average increase of only 0.06.

English

Overall, grades in academic English courses also increased only slightly, albeit a
very small amount more than mathematics grades. The mean grade increased by
about 0.06. As one can see from Figure 4.5, this very small increase stemmed

from increases in the percentages of grades in the C+ through A~ range.

In English, as in mathematics, the increase in mean grades was much larger in
the highest income group than in the others (Table 4.6). The increase in grades
was small in all racial /ethnic groups but was larger among Hispanics than
among others (Table 4.7).

Science

The distribution of academic science grades differed substantially between HSB
and NELS (Figure 4.6), but the net effect of these changes was very small. The
mean grade increased by only 0.04. In science, as in other subjects, the increase in
grades was substantially larger in the top income category than in others. It was
also somewhat larger among Hispanics and Asians than among other students
(Table 4.8).

Percentage

F D D D+ C- C C+ B- B B+
Grade point average

[C11982HSB R 1992 NELS

Figure 4.5—Distributions of Academic English GPA, 1982 HSB and 1992 NELS
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Table 4.6
Change in Academic English
GPA by Income Category
Mean Grade
All 0.063
1 0.068
2 -0.097
3 0.052
4 0.043
5 0.224
Table 4.7
Change in Academic English .
GPA by Race/Ethnicity
Mean Grade
All 0.063
Asian 0.069
African American 0.035
Hispanic 0.147
White 0.041
20
18
16 ]
14 ¥
12
10 — ;
6 H R
0 L | . o ] | c . :
F D- D D+ C C C+ B- B B+ A A A+

Figure 4.6—Distributions of Academic Science GPA, 1982 HSB and 1992 NELS

Grade point average
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Table 4.8
Change in Academic Science
GPA by Race/Ethnicity
Mean Grade
All 0.039
Asian 0.112
African American 0.017
Hispanic 0.180
White 0.007
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5. Have Grades Become Inflated?
Mathematics Grades in the Context
of Tested Proficiency and Coursework

Although the tabulations described above portray changes in grading, they do
not show changes in grading standards. To examine trends in grading standards,
it is necessary to take into account both changes in the coursework students took
and changes in their proficiency. NELS and HSB do not include enough
information to control fully for changes in proficiency and coursework, but they
do permit an estimate of these effects in mathematics. This section describes our
estimates of changes in mathematics grades, adjusting for trends in coursework
and tested proficiency in mathematics.

The section begins by describing two distinct analytical questions that are
subsumed under “grade inflation” or, more generally, changes in grading
standards. This is followed by descriptions of changes in tested proficiency and
course-taking and of the relationships between grades and level of courses. The
final subsections present estimated changes in grades with no controls, with
controls for changes in tested proficiency, and with controls for changes in both
tested proficiency and course-taking.

The results of these analyses suggest that in mathematics, grades were modestly
deflated between 1982 and 1992. The small increases in raw grades described in
the previous section were more than offset by increases in tested proficiency.

Two Notions of Changing Standards

Changes in grading standards could be of two types. Commonly, the term
“grade inflation” is used to refer to an increase in mean grades for students with
a given level of proficiency in the graded material. The notion is that a given
grade signals less of value—less achievement—than it did previously. This
notion implies only a shift upward in grades over time but not a change in the
relationship between proficiency and grades with cohorts (e.g., Figure 5.1). We
call this “mean shift” score inflation.

-
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Figure 5.1—“Mean Shift” Grade Inflation

“Changing standards” might also refer to changes in the relationship between
proficiency and grades within cohorts. That is, over time, grading may become
either more or less strongly related to differences in actual student proficiency.
In this case, grade inflation would entail a decrease in the relationship between
proficiency and grades, such that grading gave less sanction to weak performers
and less reward to high performers. This type of inflation, which we call
“decreased correlation” inflation, entails a change in the slope of the regression

of grades on proficiency (e.g., Figure 5.2).

In practice, changes in grading standards could entail both mean shifts and
changes in correlation. After describing changes in proficiency, changes in
coursework, and the relationships between coursework and grades, we analyze
both mean shifts and changing correlations in grading standards.

Changes in Tested Proficiency

It is well known that tested proficiency in mathematics has gradually improved
in recent decades. On the NAEP long-term trend assessment, the mean increase
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Figure 5.2—"Decreased Correlation” Grade Inflation

in mathematics during the 10 years between HSB and NELS was modest, and it
occurred primarily between 1990 and 1992 (Campbell, Hombo, and Mazzeo,
2000). In the sample used in this analysis, the mean increase in linked
mathematics scores between HSB and NELS was about 0.34 standard deviation.
Thus, to the extent that the HSB and NELS tests measure the same skills that
should be tapped in assigning student grades, one would expect that if grading
standards and all else had stayed constant, mean mathematics grades would
have increased by a commensurate amount—much more than the very small
increases in grades described above. However, the content of these tests does not
fully overlap with the content of high school courses. Thus, controlling for these
test scores does not fully control for relevant aspects of proficiency in
mathematics—an important limitation that is discussed further below.

Course-Taking and Its Relationships to Grades

Although students aiming for admission to selective colleges have typically taken
primarily college-track courses throughout their careers, many other students
have not. Over the past two decades, there has been strong pressure to increase




the number of academic-track courses taken by all students, and many states
have stiffened their course-taking requirements for high school graduation.

Changes in course-taking, such as an increase in participation in college-track
courses, could change the distribution of grades in many ways and could distort
inferences about trends in grading standards. If grading standards differ among
types of classes, a change in the mix of mathematics courses taken could alter
mathematics GPA even if actual performance did not change. A change in the
selectivity of students taking courses—for example, an influx into advanced
courses of lower-performing students whose counterparts in earlier cohorts
would not have taken them—could lead teachers to change grading standards
within courses. Both changes in the mix of courses taken by students and an
overall increase in the number of mathematics courses taken could contribute to
such a change in selectivity. Changes such as these would alter the relationship
between performance and grades, making it more difficult to ascertain from
simple changes in GPA whether grading standards changed.

The NELS and HSB data do not permit a thorough investigation of these
questions, but we were able to explore them in several ways for mathematics.
We examined changes in course-taking from 1982 to 1992 and investigated
differences in grading standards between the courses that saw large increases
and other courses.

Changes in Mathematics Course-Taking from 1982 to 1992

Consistent with the reform efforts of the 1980s, the decade saw a sharp increase
in the number of mathematics courses taken by the average student. In 1982, the
average number of mathematics courses completed per student in our sample
was 3.2. Ten years later, that number had increased by more than 80 percent, to
more than 5.8 courses. At the same time, there was a modest increase in
participation in courses from the traditional college-bound track, such as
geometry and algebra 2. The proportion of grades from general courses
decreased, whereas the proportion from geometry and especially algebra 2
increased (Figure 5.3).

The modest change in the proportion of courses from each area, however, does
not take into account the large increase in mathematics course-taking over the
same period. The combined effect of the increase in mathematics course-taking
and the shift into college-track classes is shown by trends in the number of course
grades per student. The number of general course grades per student dropped
slightly, while the number of grades in all categories of courses at the level of
algebra 1 or higher increased (Figure 5.4). The increases were particularly large
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Figure 5.3—Proportion of Mathematics Courses in Nine Categories,
1982 HSB and 1992 NELS
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Figure 5.4—Number of Mathematics Course Grades per Student
in Nine Categories, 1982 HSB and 1992 NELS
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in algebra 1 (80 percent), geometry (112 percent), algebra 2 (146 percent), and
advanced (114 percent). Recall that unified mathematics may include content
from any of the other categories.

Changes in Grades in Specific Mathematics Courses

The small changes in mathematics grades described above occurred primarily in
high-level classes: geometry, algebra 2, advanced, and unified. The change was
most marked in advanced classes, in which the share of students receiving a
grade of 3.0 or higher increased by 10 percent, and the share receiving a grade of
A- or higher increased by more than 7 percent (Figure 5.5). Of the courses that
showed very large increases in participation, only algebra 1 showed no consistent
increase in the percentage of high grades. Pre-algebra, which had a smaller
increase in participation, showed a small decrease in grades.

12
10

Change in percentage
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Grade

M General Consumer Occupational

Pre-algebra [J Algebra 1 Geometry

Algebra 2 [J Advanced Unified

Figure 5.5—Change in Percentage of Grades at or Above Each Level
by Type of Course, 1982 HSB and 1992 NELS
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The Relationships Between Course Level and Grades

The shift into higher-level mathematics courses, in conjunction with the large
increase in mathematics coursework, could affect the grade distribution in
several ways and could distort inferences about changes in grading standards.
For example, if grading standards and the level of difficulty of courses were
maintained, the movement of students into more difficult courses might be
expected to depress mean grades. If grading standard were maintained but were
harsher in the more advanced courses, this trend would be exacerbated. If, on
the other hand, grading standards were more lenient in more advanced
courses—for example, if teachers believed that an advanced class with the
highest-achieving students should have a high mean grade despite the difficulty
of the material—any downward trend in grades caused by the movement of
students into more advanced courses would be attenuated or perhaps even
reversed. And, of course, grading standards may have changed within levels of
coursework, either because of a secular trend in grading standards or as a
reaction to the influx of lower-achieving students into difficult courses.

In both cohorts, grades were on average higher in more advanced mathematics
courses, underscoring the potential confounding between changes in coursework
and grades. In both cohorts, the distribution of course grades was nearly
identical across the four lowest course categories, through algebra 1 (Figure 5.6).
However, geometry, algebra 2-precalculus, and advanced (which included non-
AP calculus, AP mathematics courses, and other advanced courses) had
progressively higher distributions of grades in both cohorts. These distributions
count each course grade as an observation, and the middle line of each bar
represents the median across all grades. A similar if less striking pattern appears
in the average grades of individual students. Table 5.1 shows four mathematics
grade point averages: the total GPA across all academic courses, the average
across all algebra 1 grades, the average of algebra 2 grades, and the average
across all advanced courses. In both cohorts, the mean of the advanced grades is
considerably higher than the other averages. In HSB, the mean for algebra 2 was
slightly higher than those for lower-level courses, although this difference had
nearly vanished in NELS.

These simple comparisons, however, confound two things: differences in
grading across courses and differences in the subsamples of students who
contributed grades for each class. For example, in NELS, the number of students
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Figure 5.6—Distribution of Math Course Grades by SST Course Classification

contributing algebra 1 grades was nearly four times as large as the presumably
much more selective group with grades from advanced courses. To disentangle
these two factors, we created two subgroups that were homogeneous in terms of
course-taking and explored differences in mean grades across courses within
each of these groups. Within each of these subgroups, comparisons across
courses were stripped of differences in selectivity that confound simple
comparisons across courses. The larger group contained all students who had
valid grades for both algebra 1 and algebra 2 but no grade for an advanced
mathematics course. The second and much smaller group included students
who had grades for algebra 1, algebra 2, and at least one advanced mathematics

course.

When comparisons across courses are restricted in this way to consistent
subgroups of students, the tendency for grades to be higher in more advanced
courses is reversed. Within each of these subgroups, there was a clear tendency
for grades in more advanced courses to be lower than the grades in lower-level



Mean Math GPAs, Overall and for
Advanced Courses

Table 5.1

Na Mean
1982 HSB
Total academic GPA 12,324 2.20
Algebra 1 GPA 7,906 2.24
Algebra 2 GPA 5,596 2.38
Advanced math GPA 1,332 2.70
1992 NELS
Total academic GPA 11,522 2.23
Algebra 1 GPA 8,104 221
Algebra 2 GPA 7,765 2.28
Advanced math GPA 2,113 2.70

aThe number of students contributing grades to

each mean.

classes (Tables 5.2 and 5.3). This seems reasonable, given the more difficult

material in advanced classes, and does not suggest any confounding tendency
toward more lenient grading in more advanced classes.

These consistent subgroups did show a clear change in grades, however, that is
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not an indication of inflation. In both cases, average mathematics GPAs for these
groups dropped between 1982 and 1992. In the case of students who took
algebra but not advanced mathematics, mean GPA dropped about 0.2 overall

and by a similar amount in algebra 1 and algebra 2 (Table 5.2). The decrease in

grades was larger for the much smaller subsample of students who took

advanced courses; algebra 2 grades for these students dropped by nearly 0.4
(Table 5.3). These decreases could reflect a decline in the selectivity of upper-
level courses accompanying the sizable increase in the proportion of students

taking these courses.
Table 5.2
Mean Math GPAs of Students Who Took Algebra
but Not Advanced Math
Difference,

N Mean  NEL-HSB
1982 HSB :
Total academic GPA 3,704 247
Algebra 1 GPA 3,704 2.65
Algebra 2 GPA 3,704 225
1992 NELS
Total academic GPA 4,988 2.28 -0.19
Algebra 1 GPA 4,988 244 -0.21
Algebra 2 GPA 4,988 2.06 —0.19
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Table 5.3
Mean Math GPAs of Students Who Took Algebra
and Advanced Math
Difference,

N Mean NEL-HSB
1982 HSB
Total academic GPA 552 2.98
Algebra 1 GPA 552 3.16
Algebra 2 GPA 552 2.93
Advanced math GPA 552 2.83
1992 NELS
Total academic GPA 841 2.66 -0.32
Algebra 1 GPA 841 2.83 -0.33
Algebra 2 GPA 841 256 037
Advanced math GPA 841 2.59 -0.24

Estimates of Grading Changes Independent of Scores
and Coursework

The correlation of grades with tested proficiency was estimated by comparing
the slopes of the regression of academic mathematics GPA on our linked test
scores, after adjusting for differences in the reliability of the HSB and NELS tests,
as described in Appendix E.

Mean shifts in grades were estimated with a series of models. The first stage
simply reestimated raw differences in grades, holding neither scores nor
coursework constant. This provides the same information as is shown in the
descriptive analyses above but provides an estimate that is internally consistent
with subsequent models. The second stage added controls for test scores, and
the third added controls for coursework as well. We did not estimate models
that included coursework but not scores. We used hierarchical linear models
rather than simple regressions to take into account the clustered sampling used
in HSB and NELS. These models are described in Appendix D.

Although mean shifts are the more common notion of grade inflation, we present
the analysis of correlations first in this section because the results of that analysis
influenced the analysis of mean shifts.

The models employed for this analysis are simplifications and have substantial
weaknesses that could not be avoided given the limitations of the HSB and NELS
data. One weakness is the nature of the tests used. Ideally, one would want to
adjust each course grade for proficiency in the specific material that should enter
into that grade. For example, one would want to know how geometry grades
had changed after controlling for proficiency in geometry. The survey
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assessments used in NELS and HSB have insufficient coverage of specific course-
level domains and necessarily include material irrelevant to any specific course.
It is likely, however, that if appropriate tests were available, they would correlate
highly with the NELS and HSB tests.

A second weakness is that course labels are at best a very rough indicator of the
actual content and level of demand of courses. The fact that two courses were
labeled “algebra 1,” for example, does not necessarily mean that they covered
similar ranges of material or that they covered any given material at similar
levels of depth and complexity. In addition, as the percentage of students taking
certain courses changed, the mix of those courses may also have changed. For
example, if more lower-performing students start taking a course with a given
title, one result might be more classes at a relatively easy level. Thus, our
controls for changes in coursework are only approximate.

Correlation of Grades with Tested Proficiency

There is no evidence of decreased-correlation grade inflation between the 1982
HSB and the 1992 NELS. Indeed, the correlation between tested proficiency and
academic mathematics GPA (disattenuated for unreliability in 6) increased from
0.47 in HSB to 0.58 in NELS. It is important to note that this difference in
correlations may have been influenced by differences between the HSB and
NELS tests that were not addressed by linking. For example, the NELS tests,
being adaptive and therefore longer in the aggregate, might have included more
content that is directly pertinent to course grades, which could have increased
the correlation. However, given the appreciable observed increase in the
correlation, it seems unlikely that the use of stronger and identical tests would
have reversed the finding and produced an appreciable decrease in the
relationship.

Raw Shift in Grades

The first-stage model estimated a trivial increase in mean grades. The estimated
mean increase in academic mathematics GPA was 0.02 on the 0-4.3 scale, half the
size of the very small change noted in the descriptive analysis presented above.

Changes in Grades Holding Scores Constant

Because the slope of the regression of mathematics grades on test scores changed
between the two cohorts, the model that includes test scores as a predictor of
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grades is necessarily interactive. That is, there is no single estimate of the mean
change; the mean change varies depending on the level of tested proficiency.

Our model shows grade deflation in mathematics that was larger for students
with lower test scores. For most of the range of test scores (specifically, until
nearly a full standard deviation above the mean), students with a given test score
had lower mean grades in NELS than in HSB (Figure 5.7). This difference was
appreciable for students who scored below the grand mean on the tests. For
students at the mean score (centered 6 = 0), the average academic mathematics
grade was estimated to be 0.16 lower in NELS than in HSB. For students scoring
a standard deviation below the mean test score, the difference in average grades
was 0.35. Adjusted grades were equal in the two cohorts for students with scores
roughly 0.9 standard deviations above the mean and were higher in NELS for
students with scores above that. Note that the difference in slopes between HSB
and NELS is slightly exaggerated by differences in reliability. That does not
affect the finding of grade deflation, although it presumably slightly biases
upward the estimate of that effect for low-scoring students.
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Figure 5.7—Grades as a Function of Test Scores, 1982 HSB and 1992 NELS
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Changes in Grades Holding Scores and Coursework Constant

Adding controls for changes in the mix of coursework did not alter the finding
that mathematics grades were deflated for many students. The estimated
amount of deflation was slightly smaller when coursework was taken into
account: 0.14 GPA points at the mean score (Figure 5.8). Controlling for
coursework also reduced slightly the difference between HSB and NELS in the
slope of the relationship between test scores and grades. As a result, the
estimated amount of deflation shrank a bit more (to 0.28) for students one
standard deviation below the mean than for students at the mean. Similarly, the

point at which estimated deflation was zero increased slightly, to about one
standard deviation above the mean.
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Academic math GPA
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Figure 5.8—Grades as a Function of Test Scores Holding Coursework
Constant, 1982 HSB and 1992 NELS




6. A Detailed Look at Predictors of Grades
in 1982 and 1992

To understand the influences on grades more fully, we analyzed the
relationships between academic mathematics GPA and a variety of student and
school characteristics. Identical analyses were carried out in the 1982 and 1992
cohorts. These analyses were two-level hierarchical linear models, with students
as level 1 observations and schools as level 2. Additional details of these models
can be found in Appendix D.

These analyses were carried out in several stages. The first stage included 11
student-level variables: mathematics score (6, grand mean centered within
cohort), gender, mother’s education, four variables indicating the proportion of
the student’s mathematics grades that came from each of the four categories
described previously, and dummy variables for low income, African American,
Hispanic, and college-preparatory-track flag. This first-stage model initially
included 13 level-2 variables: the school means of each of the 11 student-level
variables and flags for rural and urban school location. The location flags were
deleted, however, because of a lack of predictive power, so all school-level
variables in the analyses reported here are simply the school means of student-
level variables.

At this first stage, the relationships between the student-level variables and GPA
were held constant across schools. The models were designed to indicate the
extent of context effects—that is, the predictive power of school-level variables
after controlling for student-level characteristics. For example, a zero coefficient
for schools” proportion African American enrollment would not indicate that this
proportion fails to predict mean GPA; rather, it would mean that the proportion
African American enrollment adds no information beyond that provided by the
race and ethnicity of the individual students in the schools.!

Because the relationships between scores and grades might vary as a function of
student or school characteristics, the second and third stages of analysis entered
interactions with scores. The second stage added interactions between students’
scores and some other student-level variables, such as the interaction between

1Specifically, the analysis at stage 1 used fixed-coefficient models and did not center student-
level variables around the school means. See Appendix D.
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gender and test scores as predictors of GPA. The third stage allowed certain
student-level relationships to vary across schools as a function of school
characteristics; that is, they added selected cross-level interactions with scores,
such as the interaction between students’ scores and the percentage of the
school’s students who self-identified as African American. Some terms that did
not significantly predict GPA were removed.

The models described here all included mathematics test scores and thus
estimate the relationships between other factors and grades after controlling for
tested proficiency in mathematics. However, as noted above, these tests are only
limited proxies for the ideal assessments that would measure the proficiencies
relevant to the mathematics grades students received. For this reason, caution is
needed in interpreting the results of these models. For example, all of the
analyses show that holding constant all else in the models, female students
received substantially higher mathematics grades than did males. This does not
necessarily indicate that teachers applied more lenient grading standards to
female students. Itis possible that female students on average performed better
on aspects of mathematics that were not tested in these assessments but were
relevant to their grades. Research has also shown that many teachers consider
factors other than proficiency, such as effort and behavior, in assigning grades,
and it is possible that female students on average perform better in terms of these
factors. Itis also plausible, however, that differences in grading standards
contributed to the relationships estimated in these models. For example,
differences in leniency could have contributed to the relationship between
gender and grades, and it is entirely plausible that differences in grading
standards among schools of different types contributed to some of the
relationships between school characteristics and mean grades.

Although some differences between the findings for the 1982 and 1992 cohorts
did appear, the results of the models were generally similar, indicating that the
determinants of grades had not changed markedly during the decade between
the cohorts. Therefore, to simplify presentation, we focus primarily on results
from HSB and then point out some differences that emerged when identical
models were run in NELS.

Influences on Grades in 1982 HSB

All of the models showed that scores on the HSB and NELS mathematics tests
were moderately strong predictors of grades. In the case of HSB 1982—which
showed a weaker relationship between scores and grades than did NELS 1992—
each standard deviation increase in test scores predicted an increase of 0.42 in



GPA, on a 0-4.3 scale (Table 6.1). Note that this estimate, which controls for
differences on the other variables in this model, is approximately equal to the
raw relationship between scores and grades.

The simplest model, from the first stage described above, shows that after test
scores are controlled, a number of student- and school-level variables have
substantial relationships with academic mathematics GPA. As noted, female
students had mean grades exceeding those of males by 0.3 on a 0—4.3 scale (Table
6.1). Both low-income students and students in the college-preparatory track
received slightly higher average grades, but these differences, although
statistically significant, were very small. The mean grades of Hispanic and
African American students were slightly lower than those of other students, but
the first of these differences was not significant. (Note that in these models,

Table 6.1
Two-Level (Fixed Coefficients) Model of Academic
Mathematics GPA, 1982 HSB
Variable Estimate t P
Student-level variables
Intercept 2.10 23.8 <0.0001
Female 0.30 16.0 <0.0001
Mother's education -0.01 -1.9  0.0604
Low income 0.07 2.8 0.0054
Hispanic -0.05 -1.6  0.1038
African American -0.08 -2.1 0.0333
Math 6 0.42 30.1 <0.0001
College prep 0.08 35 0.0004
Proportion advanced 0.47 3.9 <0.0001
Proportion algebra 1 -045 -114 <0.0001
Proportion algebra 2 0.32 5.6 <0.0001
Proportion geometry -0.31 -54 <0.0001
School-level variables
School proportion female -0.13 -1.7  0.0954
School mean mother's education 0.00 02 08644
School proportion low income 0.25 32 0.0016
School proportion Hispanic -0.17 20 0.0465
School proportion African American  -0.39 —4.5 <0.0001
School mean math 6 -0.18 —~4.0 <0.0001
School proportion college prep -0.20 -26  0.0099
School proportion advanced -0.32 -1.0 03152
School proportion algebra 1 0.55 4.8 <0.0001
School proportion algebra 2 0.28 19  0.0603
School proportion geometry 0.30 1.8 0.0766
Residual variances
7 (between-school) 0.08 11.1 <0.0001

o2 (within-school) 5.09 56.3 <0.0001




Hispanic and African American students are compared only to non-Hispanic
whites.)

The mix of mathematics courses students took had a strong effect on math GPA,
but these effects are hard to interpret. Recall that these variables indicate the
proportion of grades derived from courses in each category, with courses fitting
into none of the categories (41 percent of grades in HSB and 27 percent in NELS)
as the omitted group. The larger the proportion of grades from geometry or
algebra 1, the lower the mathematics GPA; the larger the proportion from algebra
2 or advanced classes, the higher the mathematics GPA (Table 6.1). These
differences could reflect a mix of selection effects (i.e., differences among the
students who enroll in different classes), grading standards, and the correlations
between scores on the HSB test and proficiency with the material upon which
grades are based on each type of course.

A number of school characteristics showed substantial relationships to mean
GPA, even after taking student characteristics into account. Mean test scores and
the proportion of students in the college-preparatory track both had significant
negative relationships to mean GPA, which might indicate tougher grading
standards in high-achieving schools (Table 6.1). However, these effects were
small. The coefficient for school mean math 6, for example, indicates that an
increase of a full standard deviation in mean test scores predicts a decrease of
0.18 in mean GPA, and a school with all students in the college-preparatory
track, if one were to exist, would have a mean GPA 0.20 lower than a school that
had no students in that track but was otherwise comparable. Consistent with a
simpler study of NELS (U.S. Department of Education, 1994), schools with a
higher proportion of low-income students had higher mean grades, holding all
else constant, but schools with larger Hispanic or especially large African
American enrollments had lower mean grades. The proportion African
American enrollment had a sizable effect; the model predicts that the mean GPA
in an all-African American school would be 0.39 lower than in a school that had
no African American enrollment but was otherwise similar. The means of the
proportion of marks from each category of courses showed sizable relationships
to mean GPA, but only one of these effects was unambiguously significant. That
is, the mean proportion of grades from algebra 1 classes showed a strong positive
relationship with mean GPA, even though at the student level, students’
proportion of grades from this type of class was negatively related to GPA.

The second-stage analysis examined student-level interactions between
mathematics test score and four dummy variables that identified students as
female, low-income, African American, or Hispanic. This showed that there was



no interaction with the African American variable—i.e., the student-level
relationship between scores and GPA was essentially the same for African
Americans and students who were neither African American nor Hispanic (Table
6.2). There were small interactions with the other three variables, however. The
relationship between scores and GPA was slightly stronger for females than for
males and slightly weaker for both Hispanics and low-income students. In the
language used in the previous section, at the student level, GPA was somewhat
more sensitive to tested proficiency for female students and somewhat less
sensitive for Hispanic and low-income students.

To start the third stage of the analysis, we allowed the student-level relationship
between scores and GPA to vary rather than constraining it to be constant across
schools. This variance component was statistically significant, so we attempted
to predict the variation among schools using three characteristics of schools: the
proportions of students who were African American, Hispanic, or low income.

The only cross-level interaction that was statistically significant was the
interaction between mathematics 8 and the proportion of students who are low
income (Table 6.3). This interaction showed that the student-level relationship
between scores and GPA was stronger in schools that had a larger proportion of
low-income students. This finding was only marginally significant, however,
and it was not replicated in NELS (see below), so it may not warrant

interpretation.
Table 6.2
Student-Level Interactions in Prediction of Academic
Mathematics GPA, 1982 HSB
Student-Level Interaction Estimate t P
Female x math 8 0.06 0.01921  0.002
African American x math 6 -0.01 0.03547 0.71
Hispanic x math 8 -0.08 0.0315 0.009
Low income x math 6 -0.10 0.02438 <0.0001
Table 6.3
Cross-Level Interactions in Prediction of Academic
Mathematics GPA, 1982 HSB
Cross-Level Interaction Estimate t P
School proportion low income x math 6 0.14 20 0.047
School proportion African American x math 6 -0.09 -14 0.165

School proportion Hispanic x math 6 -0.08 -11 0.267
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Influences on Grades in 1992 NELS

The simple two-level model in NELS showed the same general patterns as the
comparable model in HSB, but the size of some estimates differed. The
discussion here focuses on the differences. In the following tables, a column
showing the differences in estimates between the two cohorts has been added,
and variables for which estimates changed appreciably and significant are in
shaded rows.

Several of the estimates of student-level relationships changed appreciably
between 1982 and 1992. As noted above, the relationship between test scores and
mathematics GPA became stronger (Table 6.4)—by 0.10, when holding all else in

Table 6.4
Two-Level (Fixed Coefficients) Model of Academic Mathematics
GPA, 1992 NELS
Difference,

Variable Estimate t p NELS-HSB
Student-level variables

Intercept 2.03 274 <0.0001 -0.07
Female 0.21 129  <0.0001 -0.08
Mother's education 0.01 1.3 0.1863 0.02
Low income 0.04 2.0  0.0488 -0.02
Hispanic -007 -17  0.089 -0.02
African American 009 26 0.009 -0.01
Math 6 . ... .05 328 <00001 010
College prep » 013 6.7 <0.0001 0.05
Proportion advanced ’ 0.64 6.0  <0.0001 0.16
Proportion algebra 1 -0.70 -12.6. <0.0001 -0.25
Proportion algebra2 030 54 <0.0001 -0.02
Proportion geometry - —0.57 -89 <0.0001 ~025
School-level variables

School proportion female -0.11 21  0.0398 0.02
School mean mother's education 0.04 22 0.0279 0.03
School proportion low income 0.19 28  0.0048 -0.06
School proportion Hispanic -0.11 -1.5 01242 0.06
School proportion African American . -027 . —41 <0.0001  ..011
School mean math 6 -014 -35 0.0005 0.03
School proportion college prep -0.16 -3.0  0.0032 0.03
School proportion advanced 045 -15 0.1449 -0.13
School proportion algebra 1 0.54 39 0.0001 -0.02
School proportion algebra 2 0.39 29  0.0042 01
School proportion geometry 0.33 20  0.047 0.03
Residual variances

7T (between-school) 0.10 141 <0.0001 0.02

o 2(within-school) 3.20 54.3  <0.0001 -1.88




the model constant. Both the positive association between GPA and the
proportion of grades from advanced courses and the negative associations
between GPA and the proportion of grades from algebra 1 and geometry became
substantially stronger. The cause of this change is not clear. The gender
difference in grades shrank somewhat.

Two changes in school-level relationships stand out. First, the association
between high proportions of African American students and lower mean GPA
became substantially weaker between 1982 and 1992 (Table 6.4). Second, the
positive relationship between mean GPA and the mean proportion of grades
from algebra 2 classes became stronger.

Student-level interactions between test scores and gender, race/ethnicity, and
income remained small in NELS, and none was highly significant (Table 6.5).
The one substantial cross-level interaction that appeared in HSB, test scores by
school proportion low income, vanished in NELS (Table 6.6).

Table 6.5
Student-Level Interactions in Prediction of Academic Mathematics
GPA, 1992 NELS
Difference,
Student-Level Interaction Estimate t ) NELS-HSB
Female x math 8 0.08 39 <0.0001 0.02
African American xmath 6 -0.05 -1.5 0.1442 -0.04
Hispanic xmath 6 -0.02 -0.6 0.5851 0.06
Low income x math 6 -0.06 -23  0.0207 0.04
Table 6.6

Cross-Level Interactions in Prediction of Academic Mathematics GPA, 1992 NELS

Difference,
Cross-Level Interaction Estimate t r NELS-HSB
School proportion low income x math 8 -0.02 -03 0.7892 -0.16

School proportion African American x math 0 -0.12 -2.1  0.0398 -0.03
School proportion Hispanic x math 8 —0.03 04 0.6895 0.05
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7. Discussion

Taken together, the results presented here are largely inconsistent with anecdotal
reports of serious grade inflation in high school. We distinguished between two
types of grade inflation: a mean shift, in which the average grades of students at
a given level of proficiency increase, and decreased correlation, in which the
relationship between grades and tested proficiency weakens. Neither type of
grade inflation was apparent in our analyses.

Descriptive analyses showed increases between 1982 and 1992 in both the mean
overall GPA of high school seniors and in the percentage of grades greater than
or equal to B, but in most instances, these increases were very small. More
detailed analysis of academic mathematics grades casts further doubt on the
existence of large-scale grade inflation. Course grades for subsamples with
comparable levels of mathematics courses dropped from 1982 to 1992, perhaps
reflecting a decrease in the selectivity of those courses stemming from the large
increase in the proportion of students enrolling in them. Tested proficiency in
mathematics increased substantially during the decade in question, and if this
increase is taken into account, adjusted grades actually decreased, particularly
for low-scoring students. Taking into account the sizable increases in
mathematics coursework in general and in advanced coursework in particular
only slightly lessened the estimated grade deflation. In mathematics, the
correlation of GPA with tested proficiency increased from 1982 to 1992. Finally,
multilevel models of the predictors of grades showed relatively modest changes
from 1982 to 1992.

The limitations of these analyses are important and need to be considered in
interpreting these findings. One important set of limitations stems from the
achievement tests used. Ideally, an analysis of changes in grading standards
would control for students’ mastery of the material that should count toward
each grade. In mathematics, for example, the ideal would be to have a test for
algebra 1, another test for algebra 2, and so on, each linked across two cohorts.
We did not have access to so much detail about student achievement. Rather, we
had only the general-purpose survey tests administered with the HSB and NELS
surveys. Therefore, our controls for student achievement are incomplete, and
better controls might have yielded substantially different estimates of adjusted
changes in grading. Moreover, even though the HSB and NELS mathematics
tests were linked using accepted methods, they are not equivalent. It is possible,




for example, that the NELS test, which is adaptive (i.e., it employs different forms
for students at different levels of proficiency), is a better measure of the material
relevant to certain course grades than is the HSB test. If this were so, it could
explain the increased correlation of grades with scores in NELS, and it could also
have affected our estimates of adjusted changes in grading.

The available measures of coursework are similarly insufficient. Atany one time,
there can be a great deal of variation in content and difficulty within each of the
course categories we used, such as “algebra 1” and “geometry.” More
threatening to our analyses is the fact that there could be differences across time
as well. For example, as the mean number of mathematics courses increased and
the percentage of students taking relatively advanced courses grew, the typical
content or difficulty level of a given type of course could have changed in
response. Thus, our controls for changes in course-taking are also less than ideal.

Nonetheless, the consistency of our results across different types of analysis
strongly suggests that there was no large-scale, substantial grade inflation, at
least in mathematics, between 1982 and 1992. Better measures and models could
lead to somewhat different estimates, but it seems unlikely that they would lead
to a dramatically different finding.

If these conclusions are correct, what accounts for their inconsistency with
widespread and persuasive accounts of serious grade inflation? There are
several possible explanations, all of which are only speculative. One is that grade
inflation has occurred in recent years but happened primarily outside the time
period considered here—either before or after the cohorts graduating between
1982 and 1992. This hypothesis is consistent with the findings of Ziomek and
Svec (1995), who found minor inflation from 1990 through 1992 but more
substantial inflation later. Analyses now under way at the College Board are also
consistent with this hypothesis and have found evidence of grade inflation
occurring after the period we considered.! A second possibility is that localized
increases in grades attracted great attention and created an impression of
changes more pervasive than those that actually occurred. For example, we did
find a small increase in mean overall GPA and a more sizable increase in
mathematics GPA among high-income students. Grade inflation in some high-
income schools might have attracted the attention of both the press and of
universities that draw disproportionately from schools serving advantaged
youth. A third possibility is that grading standards in earlier years were not as
stringent as many people recall them to be and that instances of overly lenient

personal communication from W. Camara, E. Kimmel, and J. Scheuneman, 2000.
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grading are not a new phenomenon. Grades may have been higher than people
remember, and the work corresponding to a given grade might not have been
easier than it is now. Indeed, in one of the authors’ communities, for example, it
is common to hear parents commenting that their children are required to do
much harder work in high school than the parents had to do a generation earlier.

Possible changes in grading standards remain an important issue, however. This
possibility is of critical importance to postsecondary institutions, and it is also a
key concern for K-12 educators in an era in which the enforcement of standards
is a central focus of education policy. Therefore, further exploration is
warranted. For example, it is important to explore whether grade inflation
occurred outside the period covered by this study. Other types of research
would be an important complement to the type of work presented here.
Research that uses large-scale surveys and the general-purpose achievement tests
that are typically administered in them provide a coarse lens. Such research is
useful for discerning large-scale trends and some of the rudimentary
relationships that accompany them but is not fully sufficient to explore changes
in grading standards. Other types of research that sacrifice scale and perhaps
representativeness for the sake of greater detail may provide a necessary
complement. For example, some states and districts administer end-of-course
examinations that would be far stronger than the tests used here as controls for
student mastery of grade-related content. Similarly, detailed examination of
students admitted to specific postsecondary institutions might provide evidence
of changes in the level of preparedness of accepted students with a given level of
GPA.
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A. IRT Scaling of Mathematics Test Scores,
1982 HSB Seniors and 1992 NELS

Seniors
by Thomas Sullivan

Response Matrix

The first step was to create a matrix of item responses (and corresponding
answer key) for the test-taking students in each cohort. All students who
responded to at least one question, had a positive questionnaire weight (F2QWT
for NELS or FUWT for HSB), and had been administered the test (TESTFLAG =
1) were used in the scaling regardless of their presence in our final analysis of
grading standards. IRT calibration was based on a weighted response vector
where the weights are derived from (1) the test weight (a rescaled test weight for
NELS that forced strata weight totals to be the same for the questionnaire
students and the test-taking students), and (2) the follow-up test weight,
FUTESTWT, for HSB. The rescaled weights used are k; times the original test
weights (i = 1, 2), where k;is a cohort-specific scalar that forces the sum of the
weights in both cohorts to be the same (and therefore to contribute equally to the
scaling).

Groups

In total, there are 94 unique mathematics items across the two cohorts, i.e., HSB
and NELS seniors. There are 38 questions in the HSB test, 70 questions in the
NELS tests, and 14 items common to both (70 + 38 —14 = 94). Different NELS
tests were administered to three ability groups (low, medium, and high). For
purposes of the IRT analysis, each of these different test forms defines a test-
taking “group.”

IRT Item Parameter Estimation

BILOG-MG was used with marginal maximum likelihood (MML) estimation of
the item parameters and maximum likelihood estimation of the 6 distribution.
Separate prior distributions on the 8 vectors were allowed for each of the four
groups during the item calibration phase but a common set of item parameters
was estimated for all students regardless of their group. To solve the
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indeterminacy of the location of the 6 vectors, the first group (HSB) was used as
reference and that ability vector was rescaled to follow an N(0, 1) distribution.
Beta prior distributions were put on the guessing parameter of each item so that
the mean was equal to 1/k where k is the number of possible responses. Since
the mean of a 8 prior is a/(a — fB) and the varianceisa 8/[(a + B)2(a + B +1)],
any a can be arbitrarily chosen for a fixed B to get the desired prior mean.
However, to control the variance subject to a target mean, the sum of a2 +  must
be carefully chosen. BILOG-MG initially chooses the values so thata + f =20,
and our priors reflected the same approach. The prior means are determined by
the number of possible responses (3, 4, or 5). Prior means and standard
deviations for the slope assume a lognormal distribution and are set to mean (a)
=1, SD(a) = 1.649.

For the first round of estimates, 25 iterations were run and convergence to the
default tolerance was not achieved. However, this was an exploratory run to see

if more informative priors were needed on the item parameters.

Contributions to the IRT literature (Hambleton, 1989; Lord, 1975; Thissen and
Wainer, 1985; de Gruijter, 1984; Swaminathan and Gifford, 1986) suggest that
informative priors should be attached to item parameters if (a) the slope is large
(at least 2.0) and (b) the value b; - 2/a; < —k where b; is the estimated threshold
(difficulty) for item i, ajis the estimated slope (discrimination) for item i, and k is
some positive constant (Lord suggests k = 4 for large samples). Using these
guidelines, we attached a prior to the guessing parameters of items 2 and 88, and
to the slopes of items 56 and 89. The guessing parameter priors are accomplished
by attaching beta distribution parameters so that the prior mean is 1/2k while
maintaining the restriction thata + f = 20. For the slope priors, the mean was
again set to 1 but the standard deviation was set to a value much smaller than the
default (0.085 instead of 1.645) to keep the slope estimate from wandering off to a
large number. In this multiparameter estimation, the likelihood surface may
have many local maxima, and the goal is to initialize the calibration at a point in
the likelihood surface that returns values consistent with historical IRT results.

After imposing these priors and increasing the number of iterations to 50, a new
BILOG file was created for a second calibration. However, it should be noted
that the attached priors on the slopes resulted in their new estimates actually
being higher (an unexplainable phenomena in BILOG that should not occur with
extremely strong priors). So, a third calibration was run that just attached the
priors to the guessing parameters. Unfortunately, the results were contrary to
the intervention and so we returned to the original estimation without

intervention, but now increasing the iterations to 50.
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Using the results of this calibration, maximum likelihood estimation of the 8
distribution was conducted while holding the item parameters fixed at their
estimated values. The score vector was then rescaled so that the weighted scores,
without regard to group membership, would have an N(0, 1) distribution. The
rescaling transformation preserves the Number Right True Score (NRTS) values
that were available before the rescaling by modifying the a;, b;, and 8 values.

The weighted values of 8 for each group are shown in Table A.1 and Figure A.1.

Table A.1
Weighted 6
Cohort Test N Mean SD Minimum Maximum
Both 39,926 0.00 1.00 -3.82 3.37
HSB All 25,690 -0.15 1.06 -3.82 3.37
NELS All 14,236 0.15 091 —2.25 2.84
NELS NELS low 2,554 -0.77 0.53 225 0.75
NELS NELS medium 7,717 0.06 0.71 -2.20 2.34
NELS NELS high 3,965 1.21 0.51 -0.45 2.84

Number Right True Scores and Number Right Formula
Scores

The vector of @ values can be passed through the item parameters from the HSB
test(i=1, ..., 38items) or the NELS test (i =1,. .., 70 items) to get an expected
probability of answering item i correctly for studentn (n=1, ..., N), which will
be called Pi(") (6). The number right true score for the nth student is 3, Pi(") 6).
For each student, we computed a NRTS using the HSB scores (H_NRTS) and the
NELS (N_NRTS) scores. To get the Number Right Formula Scores (NRFS) for the
HSB test, we used H_NRFS = H-NRTS - (38 - H_NRTS)/3, where 38 is the
number of items and 3 is the number of alternatives minus 1. Similarly, a NRFS
was computed for NELS (N_NRFS), but 70 and 3.328571 (the mean number of
responses — 1 ) were used in the transformation.

Note that all 70 item parameters were used for assigning NRTS and NRFS to
students with NELS parameters even though each NELS student was
administered only 40 of the 70 questions depending on his or her ability group.
It is possible to construct a set of scores based only on each test form, but data
exploration suggested this was unnecessary. Table A.2 is a summary of the
estimated NRFS values by test form. The correlations of the NRFS in Table A.3
show that the estimates are stable regardless of the item parameters used.
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Figure A.1—Distributions of 8 by Group

Figure A.2 shows the NRTS by actual number of items answered correctly
(jittered) by test form and cohort. One would expect the two NRTS and actual
number of items answered correctly to have a strong positive correlation. One
would also expect the estimates to be more stable as the number of correct items
approaches 38 since, in lower values of “CORRECT,” the items answered
correctly by each student may be of varying difficulty. But, asn — 38, the
correctly answered items become the same for each observation.

Density

Density
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Table A.2
NRFS Values by Test Form
Cohort Test N Variable Label Mean SD Range
HSB HSB 25,690 PCT_CORR Percent correct 051 022 1.00
H_NRFS HSB NRFS 1344 10.78 40.50
N_NRFS NELS NRFS 2354 17.81 75.86
S_H_NRFS HSB NREFS standardized -0.14 1.01 3.78
S_N_NRFS NELS NRFS standardized -0.14 1.02 433
SCALE 0 scaled to weighted N(0,1) -015 106 7.19
NELS NELShigh 3,965 PCT_CORR Percent correct 063 0.15 0.88
H_NRFS HSB NRFS 2890 5.05 29.53
N_NRFS NELS NRFS 48.66 894 52.87
S_H_NRFS HSB NREFS standardized 1.30 047 276
S_N_NRFS NELS NRFS standardized 1.29 051 3.02
SCALE 0 scaled to weighted N(0,1) 121 051 329
NELS NELS medium 7,717 PCT_CORR Percent correct 054 016 098
H_NRFS HSB NRFS 1536 8.21 38.46
N_NRFS NELS NRFS 26.73 13.08 69.87
S_H_NRFS HSB NRFS standardized 0.04 077 359
S_N_NRFS NELS NRFS standardized 0.04 075 3.99
SCALE 0 scaled to weighted N(0,1) 0.06 071 455
NELS NELSlow 2,554 PCT_CORR Percent correct 047 0.14 093
H_NRFS HSB NRFS 548 4.77 26.26
N_NRFS NELS NRFS 11.01 8.19 44.77
S_H_NRFS HSB NRFS standardized -0.88 045 245
S_N_NRFS NELS NRFS standardized -0.86 047 255
SCALE 0 scaled to weighted N(0,1) -0.77 053 3.00
Table A.3

Weighted Correlations Among Scales

PCT_CORR H_NRFS N_NRFS S H NRFS S N_NRFS SCALE

PCT_CORR 1.00
H_NRFS

N_NRFS

S_H_NRFS
S_N_NRFS

SCALE

0.92
1.00

0.92 0.92
1.00 1.00
1.00 1.00

1.00

0.92
1.00
1.00
1.00
1.00

091
097
0.99
0.97
0.99
1.00
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B. Subsample Noncomparability

The HSB and NELS surveys were intended to represent the population of
students in the years of their administration. The degree to which they meet this
goal depends on how well they are designed, implemented, and weighted. For
example, their design must incorporate a good sampling frame for schools; their
implementation must obtain a high rate of response; and the weighting of data
must reflect both design factors (e.g., differences in the probability of sampling
different types of schools) and rates of nonresponse.

Analysis of the data from these surveys, however, is typically carried out on one
or more subsamples of the data. It is useful to think of analysis subsamples as
designed and ad hoc. Designed subsamples are addressed in the design of the
survey, for example, by creating appropriate weights or by “freshening” a
sample to replaced cases lost by attrition. For example, because not all students
in NELS and HSB who took the base-year test in each survey took the first
follow-up tests, different weights are provided for analyzing the base-year and
first-follow-up test data. Ad hoc subsamples arise in the course of carrying out
analyses. For example, if one uses two or more variables together in an analysis,
missing data on each of the variables will make it necessary to drop some cases,
and the remaining subsample may be appreciably different from any subsample
for which weights are provided.

Even if the survey is well designed and implemented and appropriately
weighted, the subsamples used in analysis may differ enough from the total
sample to threaten the validity of findings. These differences may make findings
unrepresentative of the population and may bias comparisons between surveys,
such as our comparisons between HSB and NELS. We use the term “subsample
noncomparability” to refer to these differences between analysis subsamples and
the entire sample. Substantial subsample noncomparability may arise when ad
hoc sample loss is sizable and nonrandom, and it may also arise when the
measures taken in response to design subsample differences, such as freshening,
are not sufficient to offset differences between the subsample and the sample.

In longitudinal studies, a primary source of noncomparability is attrition over
time, but there are other potentially important sources as well. When surveys are
refreshed periodically to offset attrition (as was NELS but not HSB), differences
between the freshening sample and the cases lost by attrition may leave
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noncomparability or even add to it. Both instrument-level and item-level
nonresponse can contribute to noncomparability, as can unusable responses.

A standard method for addressing noncomparability is the use of design
weights, i.e., weights reflecting the probability of selection in the design and the
probability of nonresponse. For example, the differences between the transcript
and questionnaire subsamples of NELS are addressed by the use of separate
design weights for each subsample, which are intended to make each subsample
representative of the population. However, design weights may not be enough
to maintain representativeness. Weighting may be insufficient, for example,
when nonrandom sample loss occurs within the strata used to define weights.
Weighting can also be insufficient when ad hoc subsamples differ substantially
from those addressed by weights that are available or can be constructed from
other data in the survey database

We had several reasons to be concerned about noncomparability of the analysis
samples used here. We used test data from the first follow-up of HSB and the
second follow-up of NELS, and in both samples there was considerable attrition
by the time of the relevant follow-up data collection. Our analysis required that
students have both transcript data and complete follow-up test data. This
requirement caused substantial sample loss. Neither the HSB nor the NELS
database contained weights specifically designed for this subsample, and neither
contained the design weight factors and nonresponse factors needed to construct
appropriate analysis weights. Our preliminary tabulations suggested that the
students lost from our analysis sample because of the requirement that both test
and transcript data be present differed appreciably from those retained. Valerie
Lee alerted us to possible problems with the weights assigned to students in the
NELS freshening samples.]

For our purposes, the primary sources of sample noncomparability were attrition
over time and sample loss from our requirement that students have test scores as
well as transcripts. This combined loss cannot be assessed with a single
comparison, because the students added by freshening lack a base-year test
(making it impossible to determine whether they were comparable to the
students they replaced in terms of initial achievement), and those lost because of
attrition or because of the lack of follow-up testing cannot be compared in terms
of performance on the follow-up test. Therefore, the effect of these factors and
the adequacy of any particular set of weights had to be determined from a
number of different contrasts.

personal communication, March 8, 1999.
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This appendix describes the design of the noncomparability analysis, the
findings, and the restandardization of weights.

Design of the Noncomparability Analysis

Table B.1 shows the contrasts used to examine the practical impact of sample
noncomparability and the variables that could be evaluated for each. For
example, the subsamples specified by the first contrast could be evaluated in
terms of differences in GPA, demographics, and baseline scores but not in terms
of differences in follow-up scores. All four of the contrasts among groups could
be evaluated in terms of GPA and demographics, but only the first and fourth
contrasts could be evaluated in terms of their effects on scores.

The purposes of the four contrasts are as follows:

1. This contrast looks at combined sample loss from attrition and instrument
nonresponse other than follow-up test nonresponse. Nonresponse to the
follow-up test is too substantial to be considered here and is evaluated
separately. Cases that lack baseline scores or valid GPAs had to be excluded
from this contrast.

2. By comparison with contrast 1, this one shows the effect of freshening,
without the extra selection criterion of a present follow-up score. Baseline
scores cannot be used as an outcome here because the freshening sample
lacks them.

Table B.1
Contrasts Used to Test Sample Noncomparability

Demo- Baseline Follow-

Samples GPA  graphics  Scores  Up Scores
1) Base sample vs. transcript sample, no
freshening X X X

2) Base sample vs. transcript sample,
with freshening X X

3) Total refreshed transcript sample,
total vs. those with follow-up test X X
scores

4) Refreshed vs. unrefreshed transcript
samples, both with follow-up scores X X X
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3. Comparison of this with contrast 2 will show the effect of sample loss from
students who lack follow-up tests. We cannot use tests as an outcome
because students in the freshening sample cases lack baseline test scores, and
many in this group lack follow-up scores.

4. Comparison of this with contrast 2 will show whether imposition of the extra
criterion of a present follow-up score undermines the effectiveness of the
freshening, and it also allows use of a test score outcome.

Findings

The contrasts above were examined separately for HSB and NELS. The findings
shown by HSB and NELS were fundamentally different, but in both cases, the
analyses suggested that simply weighting our analysis sample with the
transcript-file weights would provide reasonable distributions of test scores and
grades.

HSB

Sample loss from the baseline sample to our analysis sample was very large.
Only 54 percent of the base-year sample had transcripts, and only 50 percent had
both transcripts and follow-up test scores.

The effect of applying the HSB transcript weights is to raise the distribution of
GPA slightly. Using the transcript rather than the base-year weights for the
subsample with transcripts raises the mean by 0.03 standard deviation. This
difference in means suggests that the strata that lost more students going from
the base year to transcript samples tend to have higher GPA, because weighting
with the transcript weights—which should inflate the counts of cells that lost
relatively many students—raises mean GPA.

The freshening sample was small but not trivial (7.5 percent of students with
transcripts). This small freshening sample has very low GPA and follow-up
math scores (roughly —0.4 SD), and its inclusion drops the mean GPA and test
scores by 0.05 or 0.06 SD.

Despite the huge sample loss, the subgroup with both test scores and transcripts
has a mean base-year mathematics score fairly similar to that of the full base-year
math sample—about 0.05 higher after reweighting (that is, comparing the full
sample weighted by the base-year weights to the subsample with transcripts
weighted by the transcript weights). This necessarily uses the unrefreshed
sample. Adding in the freshening sample would drop mean follow-up
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mathematics scores by nearly 0.06 SD. Thus, one might conclude that the effect
of freshening and reweighting, in combination, is likely to leave mean scores
about where they were in the base-year sample. This in turn suggests that the
GPA distribution of the analysis subsample is probably reasonable.

NELS

Using the transcript rather than the base-year weights for the transcript sample
drops the mean GPA by 0.13 standard deviation. This suggests that the strata
that lost more students tend to have lower GPA, because weighting with the
transcript weights—which should inflate the counts of cells that lost relatively
many students—lowers mean GPA.

The effect on base-year test scores is in the same direction but smaller. Using the
transcript weights rather than base-year weights to tabulate base-year
mathematics scores drops mean scores by roughly 0.07 SD.

The effect of freshening on these various means is typically very small, partly
because the freshening subsample is so small. Including the freshening sample
drops the mean of follow-up mathematics scores by only 0.03 standard deviation.

Freshening did an imperfect job of maintaining the demographic composition of
the sample in the face of loss from attrition. The refreshed, reweighted transcript
sample has slightly fewer whites and shows a slightly different distribution of
parental education than the original sample.

Comparing the base-year mathematics scores for the base year and transcript
samples, weighted with their own appropriate weights, shows that the mean for
the transcript sample is higher by less than 0.04 SD. The follow-up mathematics
contrast between the refreshed and unrefreshed sample noted above suggests
that including the freshening students would drop that mean a bit, perhaps 0.02
or 0.03 SD, if we had base-year mathematics scores for them, leaving only a very
small difference in base-year mathematics scores. It is probably reasonable to
expect a similar effect on GPA. This suggests that the use of the transcript
weights on the refreshed sample is reasonable.

Restandardizing the Transcript Weights

The average sampling weight is large because the weights inflate the counts of
sampled individuals to match the estimated population. For our purposes,
however, this inflation of counts was neither necessary nor desirable. It is
unnecessary because all of our analyses reflect the relative size of groups rather
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than their absolute size. It is undesirable because a large ratio of the sum of the
weights to the count of sampled individuals can bias the results because of the
weighting algorithms used in some commercial software. Accordingly, we first
standardized the weights so that the sum of the weights equaled the count of
students in the analysis sample. This adjustment created another problem,
however: For some groups with relatively small weights, variance estimates
became seriously inflated because the term (3 w; —1), where w; is the weight for
individual 7, became very small. Accordingly, our final weights were
standardized such that > w; =10 « > N.
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C. Analysis of the Feasibility of Using SAT
and ACT Scores as Covariates

Mathematics is the only subject for which we have linked HSB and NELS test
scores that permit a control for changes in proficiency when modeling changes in
grading standards. Simple raw changes in grade distributions, however,
indicated that mathematics may differ from some other subjects in important
ways, and mathematics showed relatively little raw change in grades.
Accordingly, we carried out a number of analyses to determine whether it would
be practical to use SAT or ACT scores to control for differences in proficiency
between the 1982 HSB cohort and the 1992 NELS cohort. If SAT or ACT scores
could be used in this way, it would be possible to model changes in subjects
other than mathematics, because SAT and ACT scores are equated over time.

A principal threat to using SAT and ACT scores as controls for proficiency
changes is the possibility that the selectivity of the self-selected subsamples of
students who took the tests changed appreciably in ways that might change the
relationships between scores and grades. Accordingly, we examined changes in
the characteristics of these self-selected groups and changes in the relationships
between scores and grades. These analyses suggested that it would be
problematic to use SAT or ACT scores in this manner.

The proportion of students taking the SAT, ACT, or both increased sharply
between the two cohorts. Roughly 20 percent of students in HSB took each of the
tests, and less than 40 percent took one or the other (Table C.1). In contrast,
roughly one-third of the students in NELS took each of the tests, and nearly 60
percent took one or the other.

This increase was not uniform across demographic groups. The largest
proportional increases in the percentages of students taking both tests was
among Native Americans (wWho constitute a very small percentage of test-takers)

Table C.1

Weighted Proportions of Students Taking
ACT and SAT, HSB and NELS

Took ACT Took SAT Took Either
HSB 0.19 0.21 0.37
NELS 0.32 0.37 0.59




and Hispanics (Table C.2). The percentages of white and Asian students taking
the test grew the least. The percentage of African American students taking the
test grew somewhat more than that of whites. Thus, the increase in the
proportion of students taking the tests stemmed in substantial part from the
relatively faster growth in test-taking by historically lower-scoring groups.

It is also important to consider changes in the composition of the test-taking
population, which is determined by both the changes in selectivity within groups
and the changes in size of the groups. Because the various racial/ethnic groups
grew at substantially different rates during the decade between HSB and NELS,
changes in the test-taking population were very different from changes in
selectivity within groups. The percentage of test-takers who identified
themselves as Asian more than doubled (Table C.3), an increase that was offset
by much smaller changes in the percentages who identified themselves as either
African American or Hispanic. The percentage of test-takers who identified
themselves as white stayed nearly constant.

Table C.2

Percentage and Change in Percentage of Students Taking ACT
and SAT by Race/Ethnicity, HSB and NELS

% Taking % Taking % Taking
Race/Ethnicity  ACT SAT Either

HSB Native American 12 9 20
Asian 12 35 45
African American 9 15 24
Hispanic 9 12 20
White 22 24 41
NELS Native American 18 29 45
Asian 26 55 66
African American 21 28 44
Hispanic 21 30 43
White 36 38 64
Difference, NELS-HSB Native American 7 21 25
Asian 14 20 21
African American 12 13 21
Hispanic 11 18 23
White 14 15 23
Percentage change, Native American 58 244 126
HSB to NELS Asian 115 59 48
African American 128 85 86
Hispanic 120 149 117

White 65 63 55
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Table C.3

Weighted Composition of Groups Taking ACT and SAT
by Race/Ethnicity, HSB and NELS

% Taking % Taking % Taking
Race/Ethnicity  ACT SAT Either

HSB Native American 0.01 0.01 0.01
Asian 0.02 0.05 0.04
African American  0.07 0.10 0.10
Hispanic 0.12 0.12 0.12
White 0.78 0.72 0.74
NELS Native American 0.01 0.01 0.01
Asian 0.06 0.11 0.08
African American  0.06 0.06 0.06
Hispanic 0.07 0.09 0.08
White 0.81 0.74 0.77
Difference, NELS-HSB Native American 0.00 0.00 0.00
Asian 0.04 0.06 0.04
African American -0.02 —0.04 -0.03
Hispanic -0.05 -0.04 -0.04
White 0.03 0.02 0.03
Percentage change, Native American —48 14 -19
HSB to NELS Asian 194 118 117
African American 24 -38 -33
Hispanic -39 -31 -35
White 4 3 5

When students are classified by their mother’s highest level of educational
attainment, differences in selectivity changes were more modest but still
appreciable. The percentage of students taking either college admissions test
increased in all groups, from a low of 35 percent to a high of 72 percent (Table
C.4). However, these percentage changes do not show a consistent pattern across
educational groups.

Coupled with changes in maternal educational attainment, these changes in
selectivity produced a substantial change in the educational profile of the
families of test-takers. The percentage of test-takers whose mothers had at least a
college education increased substantially, whereas the percentage of students
from most other educational groups dropped to offset this (Table C.5).

Changes in selectivity also varied substantially but inconsistently among income
groups. The largest increase was among students in the lowest income category,
but the pattern is otherwise inconsistent (Table C.6). The income distribution
among families with children changed considerably over the decade, however,
and the result was a more striking change in the income distribution of students




Table C4

Percentage and Change in Percentage of Students Taking ACT and SAT
by Mother’s Education, HSB and NELS

% Taking % Taking % Taking
Mother’s Education ACT SAT Either

HSB Less than high school 1 11 21
Trade/vocational 18 23 37
High school graduate 19 19 36
Some college 26 28 48
Finished college 26 41 60
Master’s degree 25 37 56
Ph.D., M.D,, etc. 17 36 49
NELS Less than high school 17 19 33
Trade/vocational 33 39 65
High school graduate 32 31 56
Some college 33 44 65
Finished college 37 54 75
Master’s degree 42 58 82
Ph.D., M.D,, etc. 54 66 83
Difference, NELS- Less than high school 6 8 12
HSB Trade/vocational 15 16 27
High school graduate 13 12 20
Some college 7 16 17
Finished college 11 13 15
Master’s degree 16 22 26
Ph.D., M.D,, etc. 37 30 34
Percentage change, Less than high school 58 70 58
HSB to NELS Trade/vocational 80 72 72
High school graduate 71 61 57
Some college 29 56 35
Finished college 42 31 26
Master’s degree 64 59 48
Ph.D., M.D,, etc. 226 83 70

taking college admissions tests. The percentage of test-takers from the top
income group increased by 44 percent, whereas the percentage from all other
groups stayed constant or declined (Table C.7).

These changes in selectivity were accompanied by appreciable changes in the
relationships between scores on these tests and high school grades, and these
changes were inconsistent between the SAT and ACT. The correlation between
SAT-I math scores and the math GPA measures dropped between HSB and
NELS, from 0.55 to 0.43 in the case of academic GPA (Table C.8, shaded cells). In
the same subsample of students, the correlation between the linked HSB/NELS
math 6 scores and academic GPA stayed essentially constant, at just below 0.60.
In contrast, the correlation between ACT math scores and math GPA



Table C.5

Weighted Composition of Groups Taking ACT and SAT
by Mother’s Education, HSB and NELS

% of % of % of
ACT SAT Test
Mother’s Education _ Takers Takers  Takers
HSB Less than high school 0.11 0.10 0.11
Trade/vocational 0.10 0.10 0.10
High school graduate 0.37 0.32 035
Some college 0.20 0.18 0.19
Finished college 0.14 0.18 0.16
Master’s degree 0.07 0.08 0.07
Ph.D., M.D,, etc. 0.01 0.02 0.02
NELS Less than high school 0.07 0.06 0.07
Trade/vocational 0.13 0.12 0.13
High school graduate 035 0.28 0.32-
Some college 0.10 0.11 0.10
Finished college 0.20 0.24 0.21
Master’s degree 0.12 0.14 0.12
Ph.D.,M.D,, etc. 0.04 0.04 0.04
Difference, NELS- Less than high school  -0.05 -0.04 -0.04
HSB Trade/vocational 0.03 0.02 0.03
High school graduate  -0.03  —0.05 -0.03
Some college -010 -0.07 -0.08
Finished college 0.06 0.06 0.06
Master’s degree 0.05 0.06 0.05
Ph.D., M.D,, etc. 0.03 0.02 0.02
Percentage change, Less than high school —42 -38 -38
HSB to NELS Trade/vocational 29 21 32
High school graduate -7 -14 -9
Some college 49 -40 —44
Finished college 46 33 38
Master’s degree 76 68 68
Ph.D., M.D,, etc. 247 92 92

increased between HSB and NELS, from below 0.50 to above 0.60 (Table C.9,
shaded cells). In the ACT subsample, the correlations between the linked
HSB/NELS math 6 scores and academic GPA also increased.
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Given these indications of appreciable and inconsistent selectivity differences for
which it would not be feasible to control, we decided not to use the SAT and
ACT scores to adjust for differences in proficiency.



Table C.6

Percentage and Change in Percentage of Students Taking
ACT and SAT by Income Group, HSB and NELS

Income % Taking % Taking % Taking

Group ACT SAT Either
HSB 1 10 10 20
2 15 15 29
3 18 18 33
4 23 27 45
5 22 35 50
NELS 1 22 19 37
2 25 20 40
3 32 31 56
4 39 43 69
5 34 66 82
Difference, NELS- 1 11 8 18
HSB
2 10 5 12
3 14 14 23
4 17 16 25
5 12 31 32
Percentage change, 1 113 79 89
HSB to NELS
2 68 33 40
3 81 79 70
4 74 60 55
5 52 88 64




Table C.7

Weighted Composition of Groups Taking ACT and SAT
by Income Group, HSB and NELS

Income % of ACT % of SAT % of Test

Group Takers  Takers Takers
HSB 1 0.04 0.04 0.04
2 0.12 0.10 0.11
3 0.25 0.22 0.24
4 045 0.46 0.45
5 0.14 0.19 0.16
NELS 1 0.05 0.03 0.04
2 0.09 0.06 0.07
3 021 0.18 0.20
4 048 044 0.46
5 0.17 0.28 0.22
Difference, NELS— 1 0.00 0.00 0.00
HSB 2 -0.03 —0.04 -0.04
3 -0.04 -0.04 -0.04
4 0.03 -0.01 0.01
5 0.04 0.10 0.07
Percentage change, 1 10 -9 4
HSB to NELS 2 27 —43 =35
3 -16 -18 -16
4 7 -3 2
5 26 53 44
Table C.8

Correlations Between Math GPA and Math Scores, SAT Sample Only (Listwise

Deletion), Weighted (HSB Above Diagonal, NELS Below Diagonal)

Academic Overall HSB-NELS

Math GPA  Math GPA Math &  SAT Math
Academic math GPA 1 0.99 0.57 0.55
Overall math GPA 0.99 1 0.56 0.55
Math 6 0.59 0.59 1 0.82
SAT math ) 0.43 0.42 0.69 1

NOTE: Correlations disattenuated for measurement error in math 8.

69




Table C.9

Correlations Between Math GPA and Math Scores, ACT Sample Only (Listwise
Deletion), Weighted (HSB Above Diagonal, NELS Below Diagonal)

Academic Overall HSB-NELS
Math GPA MathGPA  Math &  ACT Math

Academic math GPA 1 0.98 0.52 0.48
Overall math GPA 0.99 1 0.53 0.48
Math 6 0.61 0.61 1 0.79
ACT math 0.64 0.63 0.82 1

NOTE: Correlations disattenuated for measurement error in math 8.
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D. Hierarchical Linear Models Used to
Explore the Predictors of Grades

This appendix describes the multilevel models used in Sections 5 and 6.

Section 5

The correlation of grades with tested proficiency was estimated by regressing
academic mathematics GPA on our linked test scores, after adjusting for
differences in the reliability of the HSB and NELS tests, as described in
Appendix E.

Mean shifts in grades were estimated with a series of hierarchical models. These
were used instead of simple regression models to account for clustering of
students within schools. The first stage simply reestimated raw differences in
grades, holding neither scores nor coursework constant. This was done to make
the estimates from this series of models internally consistent. The second stage
added controls for test scores, and the third added controls for coursework as
well. We did not estimate models that included coursework but not scores.

To estimate these models, the NELS and HSB samples were pooled after
restandardizing the weights to give the two cohorts equal weight in the pooled
sample. Our estimates of 6 were centered at the grand mean in the pooled
sample.

The base model is a three-level model (students, schools, and cohorts) estimated
in the pooled sample. Let Y denote a student’s test score, in the restandardized
IRT € metric used throughout this report. Let C indicate cohort, i index students,
j index schools, and k index cohorts (0 = HSB, 1 = NELS). Cohort is a fixed effect
in all of these models. The base model is then

Yk = Boji + €ijx (D.1)
Bojk =Yo00 +Y001Cx +#jx (D.2)

Yk =Yooo +Y001C + #jx + & =Yoo +Y001C + 7k (D3)
jk tEij j
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where Eijk is the individual-level random error within schools, Uik is the random
error in school means, and 7;j is the random individual-level error in the
combined equation.

The second stage adds scores (grand-mean-centered ) at the student level. The
slope of grades on 6 differs considerably across the cohorts. Hence this model
must include the interaction of cohort with 6.

Yiix = Boji + B1jubijk + Eijk (D4)

Bojk = Yooo +Yoo1C + (D.5)

Bijx = Y100 +¥111C (D-6)

Yijk = Y000 +Y001€ + Y1000k +¥111C Gjjkc + Tijk (D7)

The slope in Eq. D.6 is fixed because cohort is a fixed effect.

The final stage adds to the previous stage a vector of coursework variables, X.
The parameters for these variables are assumed to be fixed. The model is

Yk = Bojk + Bijxijk + B2oo Xijx + ik (D.8)

Bojk =Yoo +Y001C + t D9)

Bijk =7Y100 +¥111C (D.10)

Yiik = Y000 +Y001C + (Y100 + ¥111C) 6ijk + B2oo Xijk +7ijk (D.11)

Section 6

The models described in Section 6 are two-level hierarchical models, with
students as level-1 observations and schools as level-2 observations.

Progressively more complex models were constructed and then pared back,
based on the apparent importance of specific variables. The initial models were
“fixed coefficient” models (Kreft and DeLeeuw, 1998)—that is, the level-1
coefficients were fixed across schools. Subsequent stages entailed allowing the
coefficient for student test scores to vary randomly, adding level-1 interactions
with scores, and adding cross-level interactions with scores, i.e., variations in
level-1 slopes as a function of school characteristics.

Two of the initial variables were “macro” variables, that is, characteristics of
schools that are not aggregates of student characteristics. These were dummies
for rural and urban school location; both were dropped because they had little
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predictive power. All other school-level variables were aggregates of student-
level variables, and any variable that was included at either level was included in
the other.

The initial, fixed-coefficient models can be expressed as follows, where Xjjisa
vector of values on predictors X for individual i in school j, 8;; is the test score of
student i in school j, B; is the coefficient of test scores, B, is a vector of
coefficients for the student-level variables, Z; is a vector of values on school-level
predictors for school j, ¥; is a vector of coefficients for the school-level variables,
gj;and u;are random error terms in the student and school equations, and rijis
the student-level random error in the combined equation:

Yij = Boj + P16y + BoX;5 +ej D.12)
Boj =Yoo + V1Z; +u; (D.13)
Yij =Yoo + Brj0y; + Bo X5 + ¥1Zj +7; (D.14)

Once the macro-level variables were dropped, all variables in Z were the school
means of the student-level variables in X. Note that §; and all elements of B,
are constant across schools and that therefore neither is subscripted with a j in
these equations.

The second stage of the analysis allowed the student-level slope of GPA on test
scores, f3, to vary randomly. This model is

Yij = Boj + B1j6;; + Bo X+ (D.15)
Boj =700 + V1Z; +u; (D.16)

Bij =710 +u; (D.17)

Yij =Yoo + 71005 + BaXy5+ ViZ; +; (D.18)

Asterisks are used to differentiate terms from similar terms in differently
specified models.

The third stage adds level-1 interactions between scores and selected background
variables, B3 6;;, X;i, where Xi*]- is the subset of Xj; for which interaction terms
were calculated. This makes the combined equation

Yij =Yoo * Y1005 + B2 X5+ B3 6 Xij+ ¥1Z; 47 (D.19)

In the final stage, cross-level interactions between school-level variables and
scores were added. That is, the random variation in the student-level slopes on
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scores in Eq. D.17 was modeled as a function of selected school-level variables

Z]

Bij =710 +(Y2Z)) +u; (D-20)
This makes the combined equation:
yij =Yoo +[¥10 + Y5Z;10;+ B> X+ B3 6 X+ ¥iZ; +r; (D.21)

Because a primary purpose of the models was to explore context effects, that is,
the effects of school characteristics above and beyond the effects of individual
characteristics, none of the student-level variables were centered around their
school means. Scores (math 8) was grand mean centered to facilitate the

interpretation of interactions.
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E. Estimating and Adjusting for Reliability
of the HSB and NELS Tests

Comparisons between models estimated using HSB and NELS could be biased
by differences in the reliability of the tests used in the two surveys. HSB used a
uniform test: All tested individuals in a grade were administered the same form.
NELS used adaptive testing, in which students in grades 10 and 12 were
administered one of three forms differing in difficulty depending on their
performance on the uniform test administered in grade 8. By targeting items
more closely to a student’s level of proficiency, adaptive testing can markedly
increase the reliability of scores. As a result, comparisons across the cohorts of
models using test scores could be biased by differences in reliability.
Adjustments for differences in reliability were made more difficult by the
methods used to scale the two tests and the analytical models used in this report.

Estimating Overall Reliability

The HSB and NELS tests were scaled using three-parameter logistic IRT models.
In IRT models, in contrast to some traditional scaling models, no overall estimate
of reliability is estimated. Instead, the definition of reliability is conditional on
student proficiency.

In some traditional models, reliability is often assumed to be constant across

levels of performance. In this case, the standard error of measurement (SEM) is a
simple function of the reliability, 7,

SEM = [62(1~ 1 )2 E1)
That is, the SEM is simply the root of the error variance.

In contrast, in IRT models, the analog of the SEM, called the standard error of
estimation (SE), is assumed to be conditional on an individual’s level of
performance. The SE is defined as

SE(6)= —— (E2)

VI(8)

where 6 is the IRT estimate of proficiency and I, the test information function, is
the sum of the item information functions at a given level of 6.
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For any given 0, the reliability of the estimate can therefore be obtained by
solving Eq. E.1 for r,,» and substituting in the IRT definition of the SE from Eq.
E.2:

ras, =1- L
e}

(E.3)

An approximation of the overall reliability of the test can therefore be obtained
by taking a weighted average of the information values in Eq. E.3, where the
weights are the design weights used in the analysis:

- 1
RS X0} €4

oz =7

6 z w

Because BILOG provides a graphical display of test information as a function of
6 but no machine-readable numerical estimates, this reliability coefficient was
estimated using the information values from graphical output in intervals of 0.25
0 and calculating weighted averages of those values. This procedure yields for
our samples estimated reliabilities of 0.917 for HSB and 0.954 for NELS, both high
but discrepant enough to leave the possibility of bias in comparisons across the
two cohorts.

Accounting for Reliability Differences in Analysis

Ways to account for measurement error in the dependent variable in multilevel
models are poorly developed. To obtain a rough estimate of the severity of this
problem in our models, we specified OLS models with individual and aggregate
variables used in some of our multilevel models and estimated them with and
without correction for measurement error. This indicated that some adjustments

for measurement error were warranted.

The most complete OLS model used in this analysis was a contextual model that
included 14 student-level variables, the school aggregates of these variables, and
two macro variables (variables that do not vary within level 1 units). The
student-level variables were dummies for African American, Hispanic, and
female; four dummies for income groups; a dummy for college-prep track; math
0; mother’s education; and four dummies indicating the highest level of
mathematics course taken. The two macro-level variables were dummies for
rural and urban school location.
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Table E.1 presents the differences in parameter estimates from NELS and HSB
(HSB subtracted from NELS), with and without correction for measurement
error, and the arithmetic and percentage differences caused by the correction.

Variables are sorted in descending order of the absolute value of the percentage
differences. Twelve of the 30 variables had percentage differences in excess of 75,
and seven showed percentage differences of 170 or greater. However, most of
these variables had very small parameter estimates, and the large percentage
differences therefore corresponded to very small and unimportant arithmetic
differences in estimates. A few variables, however, showed both large enough
parameter estimates and sufficient effect of reliability that their interpretation

Table E.1

Differences Between NELS and HSB: Estimates from Contextual Models
With and Without Correction for Measurement Error

Arithmetic Percentage

Variable Uncorrected Corrected Difference Difference
African American -0.001 -0.009 -0.008 598.5
Income group 2 -0.001 0.003 0.004 -571.0
Proportion algebra 1 0.003 0.020 0.016 509.6
S mean proportion Hispanic 0.012 -0.036 -0.048 -385.4
S proportion income group 5 -0.009 -0.036 -0.027 318.7
S proportion income group 1 0.005 0.013 0.009 175.6
S mean math 6 0.015 -0.011 -0.026 -170.4
S proportion college prep -0.040 -0.005 0.035 -87.1
S proportion female 0.016 0.002 -0.013 -86.2
S mean proportion advanced -0.025 -0.004 0.022 -85.5
Hispanic -0.019 -0.035 -0.016 85.0
S proportion African American 0.071 0.015 -0.056 -78.4
Income group 1 -0.020 -0.027 -0.007 35.8
Intercept -0.136 -0.176 -0.040 29.1
Proportion geometry -0.118 -0.094 0.024 -20.0
College prep 0.072 0.085 0.013 185
Proportion advanced -0.168 -0.142 0.027 -15.8
S proportion income group 2 -0.093 -0.079 0.014 -15.3
Math 6 0.131 0.111 -0.020 -15.0
Proportion algebra 2 —0.181 -0.155 0.025 -141
S mean proportion algebra 2 -0.021 -0.019 0.003 -13.1
Srural -0.023 -0.027 -0.003 13.1
Income group 4 -0.010 -0.009 0.001 -12.4
S mean mother’s education 0.068 0.075 0.007 10.6
Female -0.085 -0.092 -0.007 8.0
Mother’s education 0.016 0.017 0.001 4.8
S urban 0.065 0.062 -0.003 —4.38
Income group 5 0.043 0.041 -0.002 -4.5
S mean proportion geometry —-0.167 -0.162 0.005 2.8
S proportion income group 4 -0.102 -0.104 -0.002 2.0
S mean proportion algebra 1 —0.250 -0.251 -0.001 0.5

NOTE: Initial S denotes a school-level variable.
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would be altered by correcting for unreliability. An example is the school
proportion African American.

Most important for our purposes is the effect of reliability differences on the
parameter estimates for student-level mathematics 6. This effect was modest.
However, because of the importance of this estimate for this report, the estimates
of the correlations between grades and 8 (in the analysis of changing-correlation
inflation) were corrected for unreliability. Because the interpretation of other
coefficients is less important and the methods for correcting multilevel models
are poorly developed, we did not correct the multilevel models for unreliability.
Therefore, only sizable differences in the parameter estimates between HSB and
NELS should be accepted with confidence.
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